At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Which point gives the vertex of [tex]f(x) = x^2 - 4x + 21[/tex]?

A. [tex](2, -17)[/tex]
B. [tex](2, 17)[/tex]
C. [tex](-2, 17)[/tex]
D. [tex](-2, -17)[/tex]


Sagot :

To find the vertex of the quadratic function [tex]\( f(x) = x^2 - 4x + 21 \)[/tex], we can use the vertex formula for a quadratic function in the form [tex]\( f(x) = ax^2 + bx + c \)[/tex].

The x-coordinate of the vertex is given by:
[tex]\[ x = \frac{-b}{2a} \][/tex]

For the function [tex]\( f(x) = x^2 - 4x + 21 \)[/tex]:
- The coefficient [tex]\( a \)[/tex] is 1.
- The coefficient [tex]\( b \)[/tex] is -4.

Substitute these values into the vertex formula to find the x-coordinate:
[tex]\[ x = \frac{-(-4)}{2(1)} = \frac{4}{2} = 2 \][/tex]

Now, we need to find the y-coordinate of the vertex. This is done by substituting [tex]\( x = 2 \)[/tex] back into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(2) = (2)^2 - 4(2) + 21 \][/tex]
[tex]\[ f(2) = 4 - 8 + 21 \][/tex]
[tex]\[ f(2) = 17 \][/tex]

Thus, the coordinates of the vertex are [tex]\( (2, 17) \)[/tex].

Hence, the point that gives the vertex of [tex]\( f(x) = x^2 - 4x + 21 \)[/tex] is:
[tex]\[ \boxed{(2, 17)} \][/tex]