At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the coordinates of the transformed rectangle, we need to perform a linear transformation on the given matrix [tex]\( R \)[/tex] using the transformation matrix provided. Below is a detailed, step-by-step solution to determine the transformed coordinates.
Step 1: Identify the matrix [tex]\( R \)[/tex] which contains the vertices of the rectangle.
The given matrix [tex]\( R \)[/tex] is:
[tex]\[ R = \begin{bmatrix} 0 & 0 & 3 & 3 \\ 0 & 3 & 3 & 0 \end{bmatrix} \][/tex]
Step 2: Identify the transformation matrix [tex]\( T \)[/tex].
The transformation matrix [tex]\( T \)[/tex] given is:
[tex]\[ T = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \][/tex]
Step 3: Perform the matrix multiplication of [tex]\( T \)[/tex] with [tex]\( R \)[/tex].
The multiplication [tex]\( T \times R \)[/tex] is performed as follows:
[tex]\[ T \times R = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 3 & 3 \\ 0 & 3 & 3 & 0 \end{bmatrix} \][/tex]
To compute each element of the resulting matrix, we take the dot product of the rows of [tex]\( T \)[/tex] with the columns of [tex]\( R \)[/tex].
- First column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \end{bmatrix} = (-1 \times 0) + (0 \times 0) = 0 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \end{bmatrix} = (0 \times 0) + (1 \times 0) = 0 \][/tex]
- Second column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 3 \end{bmatrix} = (-1 \times 0) + (0 \times 3) = 0 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 3 \end{bmatrix} = (0 \times 0) + (1 \times 3) = 3 \][/tex]
- Third column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 3 \\ 3 \end{bmatrix} = (-1 \times 3) + (0 \times 3) = -3 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 3 \end{bmatrix} = (0 \times 3) + (1 \times 3) = 3 \][/tex]
- Fourth column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 3 \\ 0 \end{bmatrix} = (-1 \times 3) + (0 \times 0) = -3 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 0 \end{bmatrix} = (0 \times 3) + (1 \times 0) = 0 \][/tex]
Thus, the resulting transformed matrix is:
[tex]\[ T \times R = \begin{bmatrix} 0 & 0 & -3 & -3 \\ 0 & 3 & 3 & 0 \end{bmatrix} \][/tex]
Step 4: Extract the coordinates of the transformed rectangle.
By reading the columns of the transformed matrix, the coordinates of the transformed rectangle are:
[tex]\[ (0, 0), (0, 3), (-3, 3), (-3, 0) \][/tex]
Step 5: Match the result with the provided options.
The coordinates we found match with the option:
[tex]\[ (0,0), (0,3), (-3,3), (-3,0) \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{(0,0),(0,3),(-3,3),(-3,0)} \][/tex]
Step 1: Identify the matrix [tex]\( R \)[/tex] which contains the vertices of the rectangle.
The given matrix [tex]\( R \)[/tex] is:
[tex]\[ R = \begin{bmatrix} 0 & 0 & 3 & 3 \\ 0 & 3 & 3 & 0 \end{bmatrix} \][/tex]
Step 2: Identify the transformation matrix [tex]\( T \)[/tex].
The transformation matrix [tex]\( T \)[/tex] given is:
[tex]\[ T = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \][/tex]
Step 3: Perform the matrix multiplication of [tex]\( T \)[/tex] with [tex]\( R \)[/tex].
The multiplication [tex]\( T \times R \)[/tex] is performed as follows:
[tex]\[ T \times R = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 3 & 3 \\ 0 & 3 & 3 & 0 \end{bmatrix} \][/tex]
To compute each element of the resulting matrix, we take the dot product of the rows of [tex]\( T \)[/tex] with the columns of [tex]\( R \)[/tex].
- First column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \end{bmatrix} = (-1 \times 0) + (0 \times 0) = 0 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \end{bmatrix} = (0 \times 0) + (1 \times 0) = 0 \][/tex]
- Second column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 3 \end{bmatrix} = (-1 \times 0) + (0 \times 3) = 0 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 3 \end{bmatrix} = (0 \times 0) + (1 \times 3) = 3 \][/tex]
- Third column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 3 \\ 3 \end{bmatrix} = (-1 \times 3) + (0 \times 3) = -3 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 3 \end{bmatrix} = (0 \times 3) + (1 \times 3) = 3 \][/tex]
- Fourth column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 3 \\ 0 \end{bmatrix} = (-1 \times 3) + (0 \times 0) = -3 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 0 \end{bmatrix} = (0 \times 3) + (1 \times 0) = 0 \][/tex]
Thus, the resulting transformed matrix is:
[tex]\[ T \times R = \begin{bmatrix} 0 & 0 & -3 & -3 \\ 0 & 3 & 3 & 0 \end{bmatrix} \][/tex]
Step 4: Extract the coordinates of the transformed rectangle.
By reading the columns of the transformed matrix, the coordinates of the transformed rectangle are:
[tex]\[ (0, 0), (0, 3), (-3, 3), (-3, 0) \][/tex]
Step 5: Match the result with the provided options.
The coordinates we found match with the option:
[tex]\[ (0,0), (0,3), (-3,3), (-3,0) \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{(0,0),(0,3),(-3,3),(-3,0)} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.