At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

The vertices of a rectangle are given in the columns of the matrix [tex]R=\left[\begin{array}{llll}0 & 0 & 3 & 3 \\ 0 & 3 & 3 & 0\end{array}\right][/tex].

If [tex]\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right] \times R[/tex] is found to perform a transformation, what are the coordinates of the transformed rectangle?

A. [tex]\((0,0), (0,-3), (-3,-3), (-3,0)\)[/tex]
B. [tex]\((0,0), (0,3), (3,3), (3,0)\)[/tex]
C. [tex]\((0,0), (0,3), (-3,-3), (-3,0)\)[/tex]
D. [tex]\((0,0), (0,3), (-3,3), (-3,0)\)[/tex]


Sagot :

To find the coordinates of the transformed rectangle, we need to perform a linear transformation on the given matrix [tex]\( R \)[/tex] using the transformation matrix provided. Below is a detailed, step-by-step solution to determine the transformed coordinates.

Step 1: Identify the matrix [tex]\( R \)[/tex] which contains the vertices of the rectangle.

The given matrix [tex]\( R \)[/tex] is:
[tex]\[ R = \begin{bmatrix} 0 & 0 & 3 & 3 \\ 0 & 3 & 3 & 0 \end{bmatrix} \][/tex]

Step 2: Identify the transformation matrix [tex]\( T \)[/tex].

The transformation matrix [tex]\( T \)[/tex] given is:
[tex]\[ T = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \][/tex]

Step 3: Perform the matrix multiplication of [tex]\( T \)[/tex] with [tex]\( R \)[/tex].

The multiplication [tex]\( T \times R \)[/tex] is performed as follows:
[tex]\[ T \times R = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 3 & 3 \\ 0 & 3 & 3 & 0 \end{bmatrix} \][/tex]

To compute each element of the resulting matrix, we take the dot product of the rows of [tex]\( T \)[/tex] with the columns of [tex]\( R \)[/tex].

- First column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \end{bmatrix} = (-1 \times 0) + (0 \times 0) = 0 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \end{bmatrix} = (0 \times 0) + (1 \times 0) = 0 \][/tex]

- Second column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 3 \end{bmatrix} = (-1 \times 0) + (0 \times 3) = 0 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 3 \end{bmatrix} = (0 \times 0) + (1 \times 3) = 3 \][/tex]

- Third column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 3 \\ 3 \end{bmatrix} = (-1 \times 3) + (0 \times 3) = -3 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 3 \end{bmatrix} = (0 \times 3) + (1 \times 3) = 3 \][/tex]

- Fourth column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 3 \\ 0 \end{bmatrix} = (-1 \times 3) + (0 \times 0) = -3 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 0 \end{bmatrix} = (0 \times 3) + (1 \times 0) = 0 \][/tex]

Thus, the resulting transformed matrix is:
[tex]\[ T \times R = \begin{bmatrix} 0 & 0 & -3 & -3 \\ 0 & 3 & 3 & 0 \end{bmatrix} \][/tex]

Step 4: Extract the coordinates of the transformed rectangle.

By reading the columns of the transformed matrix, the coordinates of the transformed rectangle are:
[tex]\[ (0, 0), (0, 3), (-3, 3), (-3, 0) \][/tex]

Step 5: Match the result with the provided options.

The coordinates we found match with the option:
[tex]\[ (0,0), (0,3), (-3,3), (-3,0) \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{(0,0),(0,3),(-3,3),(-3,0)} \][/tex]