Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the sum of the first 20 terms of the given arithmetic sequence:
1. Identify the initial term (first term) and the common difference:
- The first term ([tex]\(a\)[/tex]) of the sequence is 1.5.
2. Calculate the common difference ([tex]\(d\)[/tex]):
- The sequence progresses by subtracting a constant value from each term to get the next term in the sequence.
- The second term is 1.45.
- Therefore, the common difference [tex]\(d\)[/tex] is given by:
[tex]\[ d = \text{{second term}} - \text{{first term}} = 1.45 - 1.5 \][/tex]
[tex]\[ d = -0.05 \][/tex]
3. Determine the number of terms ([tex]\(n\)[/tex]):
- We are asked to find the sum of the first 20 terms, so [tex]\(n = 20\)[/tex].
4. Use the formula for sum of the first [tex]\(n\)[/tex] terms of an arithmetic series:
[tex]\[ S_n = \frac{n}{2} [2a + (n-1)d] \][/tex]
- Here, [tex]\(S_n\)[/tex] is the sum of the first [tex]\(n\)[/tex] terms.
- Substituting the known values into the formula:
[tex]\[ a = 1.5, \quad d = -0.05, \quad n = 20 \][/tex]
[tex]\[ S_{20} = \frac{20}{2} [2(1.5) + (20-1)(-0.05)] \][/tex]
[tex]\[ S_{20} = 10 [3 + 19(-0.05)] \][/tex]
5. Simplify inside the brackets:
[tex]\[ 3 + 19(-0.05) = 3 - 0.95 = 2.05 \][/tex]
6. Calculate the product:
[tex]\[ S_{20} = 10 \times 2.05 \][/tex]
[tex]\[ S_{20} = 20.50 \][/tex]
So, the common difference is [tex]\(-0.05\)[/tex], and the sum of the first 20 terms of the given arithmetic sequence is [tex]\(20.50\)[/tex].
1. Identify the initial term (first term) and the common difference:
- The first term ([tex]\(a\)[/tex]) of the sequence is 1.5.
2. Calculate the common difference ([tex]\(d\)[/tex]):
- The sequence progresses by subtracting a constant value from each term to get the next term in the sequence.
- The second term is 1.45.
- Therefore, the common difference [tex]\(d\)[/tex] is given by:
[tex]\[ d = \text{{second term}} - \text{{first term}} = 1.45 - 1.5 \][/tex]
[tex]\[ d = -0.05 \][/tex]
3. Determine the number of terms ([tex]\(n\)[/tex]):
- We are asked to find the sum of the first 20 terms, so [tex]\(n = 20\)[/tex].
4. Use the formula for sum of the first [tex]\(n\)[/tex] terms of an arithmetic series:
[tex]\[ S_n = \frac{n}{2} [2a + (n-1)d] \][/tex]
- Here, [tex]\(S_n\)[/tex] is the sum of the first [tex]\(n\)[/tex] terms.
- Substituting the known values into the formula:
[tex]\[ a = 1.5, \quad d = -0.05, \quad n = 20 \][/tex]
[tex]\[ S_{20} = \frac{20}{2} [2(1.5) + (20-1)(-0.05)] \][/tex]
[tex]\[ S_{20} = 10 [3 + 19(-0.05)] \][/tex]
5. Simplify inside the brackets:
[tex]\[ 3 + 19(-0.05) = 3 - 0.95 = 2.05 \][/tex]
6. Calculate the product:
[tex]\[ S_{20} = 10 \times 2.05 \][/tex]
[tex]\[ S_{20} = 20.50 \][/tex]
So, the common difference is [tex]\(-0.05\)[/tex], and the sum of the first 20 terms of the given arithmetic sequence is [tex]\(20.50\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.