Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Find the sum of the first 20 terms.

[tex]\[1.5, 1.45, 1.40, 1.35, \ldots\][/tex]


Sagot :

To find the sum of the first 20 terms of the given arithmetic sequence:

1. Identify the initial term (first term) and the common difference:
- The first term ([tex]\(a\)[/tex]) of the sequence is 1.5.

2. Calculate the common difference ([tex]\(d\)[/tex]):
- The sequence progresses by subtracting a constant value from each term to get the next term in the sequence.
- The second term is 1.45.
- Therefore, the common difference [tex]\(d\)[/tex] is given by:
[tex]\[ d = \text{{second term}} - \text{{first term}} = 1.45 - 1.5 \][/tex]
[tex]\[ d = -0.05 \][/tex]

3. Determine the number of terms ([tex]\(n\)[/tex]):
- We are asked to find the sum of the first 20 terms, so [tex]\(n = 20\)[/tex].

4. Use the formula for sum of the first [tex]\(n\)[/tex] terms of an arithmetic series:
[tex]\[ S_n = \frac{n}{2} [2a + (n-1)d] \][/tex]
- Here, [tex]\(S_n\)[/tex] is the sum of the first [tex]\(n\)[/tex] terms.
- Substituting the known values into the formula:
[tex]\[ a = 1.5, \quad d = -0.05, \quad n = 20 \][/tex]
[tex]\[ S_{20} = \frac{20}{2} [2(1.5) + (20-1)(-0.05)] \][/tex]
[tex]\[ S_{20} = 10 [3 + 19(-0.05)] \][/tex]

5. Simplify inside the brackets:
[tex]\[ 3 + 19(-0.05) = 3 - 0.95 = 2.05 \][/tex]

6. Calculate the product:
[tex]\[ S_{20} = 10 \times 2.05 \][/tex]
[tex]\[ S_{20} = 20.50 \][/tex]

So, the common difference is [tex]\(-0.05\)[/tex], and the sum of the first 20 terms of the given arithmetic sequence is [tex]\(20.50\)[/tex].