Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the sum of the first 20 terms of the given arithmetic sequence:
1. Identify the initial term (first term) and the common difference:
- The first term ([tex]\(a\)[/tex]) of the sequence is 1.5.
2. Calculate the common difference ([tex]\(d\)[/tex]):
- The sequence progresses by subtracting a constant value from each term to get the next term in the sequence.
- The second term is 1.45.
- Therefore, the common difference [tex]\(d\)[/tex] is given by:
[tex]\[ d = \text{{second term}} - \text{{first term}} = 1.45 - 1.5 \][/tex]
[tex]\[ d = -0.05 \][/tex]
3. Determine the number of terms ([tex]\(n\)[/tex]):
- We are asked to find the sum of the first 20 terms, so [tex]\(n = 20\)[/tex].
4. Use the formula for sum of the first [tex]\(n\)[/tex] terms of an arithmetic series:
[tex]\[ S_n = \frac{n}{2} [2a + (n-1)d] \][/tex]
- Here, [tex]\(S_n\)[/tex] is the sum of the first [tex]\(n\)[/tex] terms.
- Substituting the known values into the formula:
[tex]\[ a = 1.5, \quad d = -0.05, \quad n = 20 \][/tex]
[tex]\[ S_{20} = \frac{20}{2} [2(1.5) + (20-1)(-0.05)] \][/tex]
[tex]\[ S_{20} = 10 [3 + 19(-0.05)] \][/tex]
5. Simplify inside the brackets:
[tex]\[ 3 + 19(-0.05) = 3 - 0.95 = 2.05 \][/tex]
6. Calculate the product:
[tex]\[ S_{20} = 10 \times 2.05 \][/tex]
[tex]\[ S_{20} = 20.50 \][/tex]
So, the common difference is [tex]\(-0.05\)[/tex], and the sum of the first 20 terms of the given arithmetic sequence is [tex]\(20.50\)[/tex].
1. Identify the initial term (first term) and the common difference:
- The first term ([tex]\(a\)[/tex]) of the sequence is 1.5.
2. Calculate the common difference ([tex]\(d\)[/tex]):
- The sequence progresses by subtracting a constant value from each term to get the next term in the sequence.
- The second term is 1.45.
- Therefore, the common difference [tex]\(d\)[/tex] is given by:
[tex]\[ d = \text{{second term}} - \text{{first term}} = 1.45 - 1.5 \][/tex]
[tex]\[ d = -0.05 \][/tex]
3. Determine the number of terms ([tex]\(n\)[/tex]):
- We are asked to find the sum of the first 20 terms, so [tex]\(n = 20\)[/tex].
4. Use the formula for sum of the first [tex]\(n\)[/tex] terms of an arithmetic series:
[tex]\[ S_n = \frac{n}{2} [2a + (n-1)d] \][/tex]
- Here, [tex]\(S_n\)[/tex] is the sum of the first [tex]\(n\)[/tex] terms.
- Substituting the known values into the formula:
[tex]\[ a = 1.5, \quad d = -0.05, \quad n = 20 \][/tex]
[tex]\[ S_{20} = \frac{20}{2} [2(1.5) + (20-1)(-0.05)] \][/tex]
[tex]\[ S_{20} = 10 [3 + 19(-0.05)] \][/tex]
5. Simplify inside the brackets:
[tex]\[ 3 + 19(-0.05) = 3 - 0.95 = 2.05 \][/tex]
6. Calculate the product:
[tex]\[ S_{20} = 10 \times 2.05 \][/tex]
[tex]\[ S_{20} = 20.50 \][/tex]
So, the common difference is [tex]\(-0.05\)[/tex], and the sum of the first 20 terms of the given arithmetic sequence is [tex]\(20.50\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.