Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Which of the following points would be a solution to this system of linear inequalities?

[tex]\[
\begin{array}{l}
y \leq x+1 \\
y \ \textless \ -\frac{x}{2} - 1
\end{array}
\][/tex]

A. [tex]\((4,1)\)[/tex]
B. [tex]\((0,-3)\)[/tex]

Sagot :

Let's determine which of the given points [tex]\((4, 1)\)[/tex] and [tex]\((0, -3)\)[/tex] satisfy the system of linear inequalities:
[tex]\[ \begin{array}{l} y \leq x+1 \\ y < -\frac{x}{2} - 1 \end{array} \][/tex]

### Checking Point (4, 1):

1. For the inequality [tex]\(y \leq x + 1\)[/tex]:
[tex]\[ y = 1 \quad \text{and} \quad x = 4 \][/tex]
Substitute the values into the inequality:
[tex]\[ 1 \leq 4 + 1 \][/tex]
Simplify:
[tex]\[ 1 \leq 5 \quad \text{(This is True)} \][/tex]

2. For the inequality [tex]\(y < -\frac{x}{2} - 1\)[/tex]:
[tex]\[ y = 1 \quad \text{and} \quad x = 4 \][/tex]
Substitute the values into the inequality:
[tex]\[ 1 < -\frac{4}{2} - 1 \][/tex]
Simplify:
[tex]\[ 1 < -2 - 1 \][/tex]
Simplify further:
[tex]\[ 1 < -3 \quad \text{(This is False)} \][/tex]

Since the first inequality is satisfied but the second one is not, the point [tex]\((4, 1)\)[/tex] does not satisfy both inequalities.

### Checking Point (0, -3):

1. For the inequality [tex]\(y \leq x + 1\)[/tex]:
[tex]\[ y = -3 \quad \text{and} \quad x = 0 \][/tex]
Substitute the values into the inequality:
[tex]\[ -3 \leq 0 + 1 \][/tex]
Simplify:
[tex]\[ -3 \leq 1 \quad \text{(This is True)} \][/tex]

2. For the inequality [tex]\(y < -\frac{x}{2} - 1\)[/tex]:
[tex]\[ y = -3 \quad \text{and} \quad x = 0 \][/tex]
Substitute the values into the inequality:
[tex]\[ -3 < -\frac{0}{2} - 1 \][/tex]
Simplify:
[tex]\[ -3 < -1 \quad \text{(This is True)} \][/tex]

Since both inequalities are satisfied, the point [tex]\((0, -3)\)[/tex] does satisfy both inequalities.

### Conclusion:
The point [tex]\((0, -3)\)[/tex] is a solution to the system of linear inequalities, whereas the point [tex]\((4, 1)\)[/tex] is not.