At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To prove that in a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle, the hypotenuse is [tex]\(\sqrt{2}\)[/tex] times the length of each leg, follow these steps:
1. Start with the Pythagorean theorem for the right triangle:
In any right triangle, the side lengths satisfy the Pythagorean theorem: [tex]\(a^2 + b^2 = c^2\)[/tex].
2. Apply the Pythagorean theorem to our specific isosceles right triangle:
Since it is a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle, the legs are equal in length. Let's denote each leg as [tex]\(a\)[/tex]. Thus, the equation becomes [tex]\(a^2 + a^2 = c^2\)[/tex].
3. Combine like terms:
This simplifies to:
[tex]\[ 2a^2 = c^2 \][/tex]
4. Isolate [tex]\(a^2\)[/tex] by dividing both sides by 2:
[tex]\[ a^2 = \frac{c^2}{2} \][/tex]
5. Determine the principal square root of both sides:
Take the square root of both sides of the equation to solve for [tex]\(a\)[/tex]:
[tex]\[ a = \sqrt{\frac{c^2}{2}} \][/tex]
6. Simplify the square root expression:
[tex]\[ a = \frac{c}{\sqrt{2}} \][/tex]
7. Solve for [tex]\(c\)[/tex] in terms of [tex]\(a\)[/tex]:
Multiply both sides by [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ c = a \sqrt{2} \][/tex]
Therefore, the hypotenuse [tex]\(c\)[/tex] is [tex]\(\sqrt{2}\)[/tex] times the length of each leg [tex]\(a\)[/tex] in a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle. This completes the proof.
1. Start with the Pythagorean theorem for the right triangle:
In any right triangle, the side lengths satisfy the Pythagorean theorem: [tex]\(a^2 + b^2 = c^2\)[/tex].
2. Apply the Pythagorean theorem to our specific isosceles right triangle:
Since it is a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle, the legs are equal in length. Let's denote each leg as [tex]\(a\)[/tex]. Thus, the equation becomes [tex]\(a^2 + a^2 = c^2\)[/tex].
3. Combine like terms:
This simplifies to:
[tex]\[ 2a^2 = c^2 \][/tex]
4. Isolate [tex]\(a^2\)[/tex] by dividing both sides by 2:
[tex]\[ a^2 = \frac{c^2}{2} \][/tex]
5. Determine the principal square root of both sides:
Take the square root of both sides of the equation to solve for [tex]\(a\)[/tex]:
[tex]\[ a = \sqrt{\frac{c^2}{2}} \][/tex]
6. Simplify the square root expression:
[tex]\[ a = \frac{c}{\sqrt{2}} \][/tex]
7. Solve for [tex]\(c\)[/tex] in terms of [tex]\(a\)[/tex]:
Multiply both sides by [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ c = a \sqrt{2} \][/tex]
Therefore, the hypotenuse [tex]\(c\)[/tex] is [tex]\(\sqrt{2}\)[/tex] times the length of each leg [tex]\(a\)[/tex] in a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle. This completes the proof.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.