Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To prove that in a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle, the hypotenuse is [tex]\(\sqrt{2}\)[/tex] times the length of each leg, follow these steps:
1. Start with the Pythagorean theorem for the right triangle:
In any right triangle, the side lengths satisfy the Pythagorean theorem: [tex]\(a^2 + b^2 = c^2\)[/tex].
2. Apply the Pythagorean theorem to our specific isosceles right triangle:
Since it is a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle, the legs are equal in length. Let's denote each leg as [tex]\(a\)[/tex]. Thus, the equation becomes [tex]\(a^2 + a^2 = c^2\)[/tex].
3. Combine like terms:
This simplifies to:
[tex]\[ 2a^2 = c^2 \][/tex]
4. Isolate [tex]\(a^2\)[/tex] by dividing both sides by 2:
[tex]\[ a^2 = \frac{c^2}{2} \][/tex]
5. Determine the principal square root of both sides:
Take the square root of both sides of the equation to solve for [tex]\(a\)[/tex]:
[tex]\[ a = \sqrt{\frac{c^2}{2}} \][/tex]
6. Simplify the square root expression:
[tex]\[ a = \frac{c}{\sqrt{2}} \][/tex]
7. Solve for [tex]\(c\)[/tex] in terms of [tex]\(a\)[/tex]:
Multiply both sides by [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ c = a \sqrt{2} \][/tex]
Therefore, the hypotenuse [tex]\(c\)[/tex] is [tex]\(\sqrt{2}\)[/tex] times the length of each leg [tex]\(a\)[/tex] in a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle. This completes the proof.
1. Start with the Pythagorean theorem for the right triangle:
In any right triangle, the side lengths satisfy the Pythagorean theorem: [tex]\(a^2 + b^2 = c^2\)[/tex].
2. Apply the Pythagorean theorem to our specific isosceles right triangle:
Since it is a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle, the legs are equal in length. Let's denote each leg as [tex]\(a\)[/tex]. Thus, the equation becomes [tex]\(a^2 + a^2 = c^2\)[/tex].
3. Combine like terms:
This simplifies to:
[tex]\[ 2a^2 = c^2 \][/tex]
4. Isolate [tex]\(a^2\)[/tex] by dividing both sides by 2:
[tex]\[ a^2 = \frac{c^2}{2} \][/tex]
5. Determine the principal square root of both sides:
Take the square root of both sides of the equation to solve for [tex]\(a\)[/tex]:
[tex]\[ a = \sqrt{\frac{c^2}{2}} \][/tex]
6. Simplify the square root expression:
[tex]\[ a = \frac{c}{\sqrt{2}} \][/tex]
7. Solve for [tex]\(c\)[/tex] in terms of [tex]\(a\)[/tex]:
Multiply both sides by [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ c = a \sqrt{2} \][/tex]
Therefore, the hypotenuse [tex]\(c\)[/tex] is [tex]\(\sqrt{2}\)[/tex] times the length of each leg [tex]\(a\)[/tex] in a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle. This completes the proof.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.