Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the surface area of a rectangular prism with given dimensions, we need to follow these steps:
1. Identify the dimensions of the rectangular prism.
- Length [tex]\( l = 4 \text{ cm} \)[/tex]
- Width [tex]\( w = 2 \text{ cm} \)[/tex]
- Height [tex]\( h = 3 \text{ cm} \)[/tex]
2. Recall the formula for the surface area of a rectangular prism.
The surface area [tex]\( A \)[/tex] can be calculated using the formula:
[tex]\[ A = 2(lw + lh + wh) \][/tex]
This formula accounts for the area of all six faces of the prism.
3. Calculate each component of the formula.
- The area of the front and back faces ([tex]\( lw \)[/tex]):
[tex]\[ lw = 4 \text{ cm} \times 2 \text{ cm} = 8 \text{ cm}^2 \][/tex]
- The area of the top and bottom faces ([tex]\( lh \)[/tex]):
[tex]\[ lh = 4 \text{ cm} \times 3 \text{ cm} = 12 \text{ cm}^2 \][/tex]
- The area of the left and right faces ([tex]\( wh \)[/tex]):
[tex]\[ wh = 2 \text{ cm} \times 3 \text{ cm} = 6 \text{ cm}^2 \][/tex]
4. Sum these areas.
[tex]\[ lw + lh + wh = 8 \text{ cm}^2 + 12 \text{ cm}^2 + 6 \text{ cm}^2 = 26 \text{ cm}^2 \][/tex]
5. Multiply the sum by 2 to get the total surface area.
[tex]\[ A = 2 \times 26 \text{ cm}^2 = 52 \text{ cm}^2 \][/tex]
Therefore, the surface area of the rectangular prism is [tex]\( 52 \text{ cm}^2 \)[/tex].
Hence, the best answer from the choices provided is:
a. [tex]\( 52 \text{ cm}^2 \)[/tex]
So the correct answer is:
A
1. Identify the dimensions of the rectangular prism.
- Length [tex]\( l = 4 \text{ cm} \)[/tex]
- Width [tex]\( w = 2 \text{ cm} \)[/tex]
- Height [tex]\( h = 3 \text{ cm} \)[/tex]
2. Recall the formula for the surface area of a rectangular prism.
The surface area [tex]\( A \)[/tex] can be calculated using the formula:
[tex]\[ A = 2(lw + lh + wh) \][/tex]
This formula accounts for the area of all six faces of the prism.
3. Calculate each component of the formula.
- The area of the front and back faces ([tex]\( lw \)[/tex]):
[tex]\[ lw = 4 \text{ cm} \times 2 \text{ cm} = 8 \text{ cm}^2 \][/tex]
- The area of the top and bottom faces ([tex]\( lh \)[/tex]):
[tex]\[ lh = 4 \text{ cm} \times 3 \text{ cm} = 12 \text{ cm}^2 \][/tex]
- The area of the left and right faces ([tex]\( wh \)[/tex]):
[tex]\[ wh = 2 \text{ cm} \times 3 \text{ cm} = 6 \text{ cm}^2 \][/tex]
4. Sum these areas.
[tex]\[ lw + lh + wh = 8 \text{ cm}^2 + 12 \text{ cm}^2 + 6 \text{ cm}^2 = 26 \text{ cm}^2 \][/tex]
5. Multiply the sum by 2 to get the total surface area.
[tex]\[ A = 2 \times 26 \text{ cm}^2 = 52 \text{ cm}^2 \][/tex]
Therefore, the surface area of the rectangular prism is [tex]\( 52 \text{ cm}^2 \)[/tex].
Hence, the best answer from the choices provided is:
a. [tex]\( 52 \text{ cm}^2 \)[/tex]
So the correct answer is:
A
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.