Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the equation [tex]\((x-3)^2 + 2(x-3) - 8 = 0\)[/tex], we can use substitution to make the process simpler.
Let's define a new variable [tex]\( u \)[/tex] such that:
[tex]\[ u = x - 3 \][/tex]
Now, substitute [tex]\( u \)[/tex] back into the equation:
[tex]\[ (u)^2 + 2(u) - 8 = 0 \][/tex]
We now have a quadratic equation in terms of [tex]\( u \)[/tex]:
[tex]\[ u^2 + 2u - 8 = 0 \][/tex]
To solve this quadratic equation, we can use the quadratic formula:
[tex]\[ u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our equation [tex]\( u^2 + 2u - 8 = 0 \)[/tex], the coefficients are:
[tex]\[ a = 1, \quad b = 2, \quad c = -8 \][/tex]
First, calculate the discriminant [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = 2^2 - 4 \cdot 1 \cdot (-8) = 4 + 32 = 36 \][/tex]
Since the discriminant is positive, we have two distinct real solutions. Now, solve for [tex]\( u \)[/tex]:
[tex]\[ u = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-2 \pm \sqrt{36}}{2 \cdot 1} = \frac{-2 \pm 6}{2} \][/tex]
This gives us two potential values for [tex]\( u \)[/tex]:
[tex]\[ u_1 = \frac{-2 + 6}{2} = \frac{4}{2} = 2 \][/tex]
[tex]\[ u_2 = \frac{-2 - 6}{2} = \frac{-8}{2} = -4 \][/tex]
Recalling our substitution [tex]\( u = x - 3 \)[/tex], we substitute back to find [tex]\( x \)[/tex]:
[tex]\[ 2 = x - 3 \implies x = 2 + 3 = 5 \][/tex]
[tex]\[ -4 = x - 3 \implies x = -4 + 3 = -1 \][/tex]
Therefore, the solutions to the equation [tex]\((x-3)^2 + 2(x-3) - 8 = 0\)[/tex] are:
[tex]\[ x = 5 \quad \text{and} \quad x = -1 \][/tex]
Given the options, the correct answer is:
[tex]\[ \boxed{x = -1 \text{ and } x = 5} \][/tex]
Let's define a new variable [tex]\( u \)[/tex] such that:
[tex]\[ u = x - 3 \][/tex]
Now, substitute [tex]\( u \)[/tex] back into the equation:
[tex]\[ (u)^2 + 2(u) - 8 = 0 \][/tex]
We now have a quadratic equation in terms of [tex]\( u \)[/tex]:
[tex]\[ u^2 + 2u - 8 = 0 \][/tex]
To solve this quadratic equation, we can use the quadratic formula:
[tex]\[ u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our equation [tex]\( u^2 + 2u - 8 = 0 \)[/tex], the coefficients are:
[tex]\[ a = 1, \quad b = 2, \quad c = -8 \][/tex]
First, calculate the discriminant [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = 2^2 - 4 \cdot 1 \cdot (-8) = 4 + 32 = 36 \][/tex]
Since the discriminant is positive, we have two distinct real solutions. Now, solve for [tex]\( u \)[/tex]:
[tex]\[ u = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-2 \pm \sqrt{36}}{2 \cdot 1} = \frac{-2 \pm 6}{2} \][/tex]
This gives us two potential values for [tex]\( u \)[/tex]:
[tex]\[ u_1 = \frac{-2 + 6}{2} = \frac{4}{2} = 2 \][/tex]
[tex]\[ u_2 = \frac{-2 - 6}{2} = \frac{-8}{2} = -4 \][/tex]
Recalling our substitution [tex]\( u = x - 3 \)[/tex], we substitute back to find [tex]\( x \)[/tex]:
[tex]\[ 2 = x - 3 \implies x = 2 + 3 = 5 \][/tex]
[tex]\[ -4 = x - 3 \implies x = -4 + 3 = -1 \][/tex]
Therefore, the solutions to the equation [tex]\((x-3)^2 + 2(x-3) - 8 = 0\)[/tex] are:
[tex]\[ x = 5 \quad \text{and} \quad x = -1 \][/tex]
Given the options, the correct answer is:
[tex]\[ \boxed{x = -1 \text{ and } x = 5} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.