Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

After being rearranged and simplified, which two of the following equations could be solved using the quadratic formula?

A. [tex]2x^2 - 3x + 10 = 2x^2 + 21[/tex]
B. [tex]5x^2 - 3x + 10 = 2x^2[/tex]
C. [tex]5x^3 + 2x - 4 = 2x^2[/tex]
D. [tex]x^2 - 6x - 7 = 2x[/tex]


Sagot :

To determine which of the given equations could be solved using the quadratic formula, we need to identify whether their simplified forms are quadratic equations. A quadratic equation is of the form [tex]\( ax^2 + bx + c = 0 \)[/tex].

Let's consider each equation individually:

### Equation A:
[tex]\[ 2x^2 - 3x + 10 = 2x^2 + 21 \][/tex]

1. Subtract [tex]\( 2x^2 + 21 \)[/tex] from both sides:
[tex]\[ 2x^2 - 3x + 10 - (2x^2 + 21) = 0 \][/tex]
2. Simplify the equation:
[tex]\[ 2x^2 - 3x + 10 - 2x^2 - 21 = 0 \][/tex]
[tex]\[ -3x - 11 = 0 \][/tex]
3. The simplified form is:
[tex]\[ -3x = 11 \][/tex]
This is a linear equation, not quadratic.

### Equation B:
[tex]\[ 5x^2 - 3x + 10 = 2x^2 \][/tex]

1. Subtract [tex]\( 2x^2 \)[/tex] from both sides:
[tex]\[ 5x^2 - 3x + 10 - 2x^2 = 0 \][/tex]
2. Simplify the equation:
[tex]\[ 3x^2 - 3x + 10 = 0 \][/tex]
This is a quadratic equation.

### Equation C:
[tex]\[ 5x^3 + 2x - 4 = 2x^2 \][/tex]

1. Subtract [tex]\( 2x^2 \)[/tex] from both sides:
[tex]\[ 5x^3 + 2x - 4 - 2x^2 = 0 \][/tex]
This is a cubic equation due to the presence of [tex]\( x^3 \)[/tex], which is not quadratic.

### Equation D:
[tex]\[ x^2 - 6x - 7 = 2x \][/tex]

1. Subtract [tex]\( 2x \)[/tex] from both sides:
[tex]\[ x^2 - 6x - 7 - 2x = 0 \][/tex]
2. Simplify the equation:
[tex]\[ x^2 - 8x - 7 = 0 \][/tex]
This is a quadratic equation.

In conclusion, the equations that could be solved using the quadratic formula are:

[tex]\[ \text{Equation B: } 5x^2 - 3x + 10 = 2x^2 \][/tex]
[tex]\[ \text{Equation D: } x^2 - 6x - 7 = 2x \][/tex]

Therefore, the correct options are:
[tex]\[ \boxed{B \text{ and } D} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.