Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve this question, we need to find the discriminant of the quadratic equation and determine the number of real roots based on it.
The given quadratic equation is:
[tex]\[ x^2 + 3x + 8 = 0 \][/tex]
A quadratic equation is of the form:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
From the given equation, we can identify:
[tex]\[ a = 1 \][/tex]
[tex]\[ b = 3 \][/tex]
[tex]\[ c = 8 \][/tex]
The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula, we get:
[tex]\[ \Delta = 3^2 - 4 \cdot 1 \cdot 8 \][/tex]
[tex]\[ \Delta = 9 - 32 \][/tex]
[tex]\[ \Delta = -23 \][/tex]
The value of the discriminant [tex]\(\Delta\)[/tex] is [tex]\(-23\)[/tex].
Next, we determine the number of real roots based on the discriminant:
- If [tex]\(\Delta > 0\)[/tex], the equation has two distinct real roots.
- If [tex]\(\Delta = 0\)[/tex], the equation has exactly one real root.
- If [tex]\(\Delta < 0\)[/tex], the equation has no real roots (the roots are complex).
Since [tex]\(\Delta = -23 < 0\)[/tex], the quadratic equation has no real roots.
Thus, the discriminant is [tex]\(-23\)[/tex] and the number of real roots is zero.
The correct answer is:
[tex]\[ \boxed{-23 ; no real roots} \][/tex]
The given quadratic equation is:
[tex]\[ x^2 + 3x + 8 = 0 \][/tex]
A quadratic equation is of the form:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
From the given equation, we can identify:
[tex]\[ a = 1 \][/tex]
[tex]\[ b = 3 \][/tex]
[tex]\[ c = 8 \][/tex]
The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula, we get:
[tex]\[ \Delta = 3^2 - 4 \cdot 1 \cdot 8 \][/tex]
[tex]\[ \Delta = 9 - 32 \][/tex]
[tex]\[ \Delta = -23 \][/tex]
The value of the discriminant [tex]\(\Delta\)[/tex] is [tex]\(-23\)[/tex].
Next, we determine the number of real roots based on the discriminant:
- If [tex]\(\Delta > 0\)[/tex], the equation has two distinct real roots.
- If [tex]\(\Delta = 0\)[/tex], the equation has exactly one real root.
- If [tex]\(\Delta < 0\)[/tex], the equation has no real roots (the roots are complex).
Since [tex]\(\Delta = -23 < 0\)[/tex], the quadratic equation has no real roots.
Thus, the discriminant is [tex]\(-23\)[/tex] and the number of real roots is zero.
The correct answer is:
[tex]\[ \boxed{-23 ; no real roots} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.