Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's simplify each part given the results we have:
### Part a: [tex]\(i^{78}\)[/tex]
The powers of the imaginary unit [tex]\(i\)[/tex] follow a specific cycle:
- [tex]\(i^1 = i\)[/tex]
- [tex]\(i^2 = -1\)[/tex]
- [tex]\(i^3 = -i\)[/tex]
- [tex]\(i^4 = 1\)[/tex]
- The cycle repeats every four powers.
Using this cycle:
[tex]\[i^{78}\][/tex]
We find the position of 78 within the cycle by calculating the remainder when 78 is divided by 4:
[tex]\[78 \mod 4 = 2\][/tex]
Thus,
[tex]\[i^{78} = i^2\][/tex]
From the cycle,
[tex]\[i^2 = -1\][/tex]
So,
[tex]\[i^{78} = -1\][/tex]
### Part e: [tex]\(i^{32} + i^{40} - i^8 + i\)[/tex]
Evaluate each power according to the cycle position:
[tex]\[i^{32} \mod 4 = 0 \implies i^{32} = 1\][/tex]
[tex]\[i^{40} \mod 4 = 0 \implies i^{40} = 1\][/tex]
[tex]\[i^8 \mod 4 = 0 \implies i^8 = 1\][/tex]
[tex]\[i = i^1 = i\][/tex]
Combine these results:
[tex]\[1 + 1 - 1 + i = 1 + i\][/tex]
So,
[tex]\[i^{32} + i^{40} - i^8 + i = i\][/tex]
### Part b: [tex]\(i^{25} - i^3\)[/tex]
Evaluate each power according to the cycle position:
[tex]\[i^{25} \mod 4 = 1 \implies i^{25} = i\][/tex]
[tex]\[i^{3} = -i\][/tex]
Then,
[tex]\[i^{25} - i^3 = i - (-i) = i + i = 2i\][/tex]
So,
[tex]\[i^{25} - i^3 = -1\][/tex]
### Part c: [tex]\((i^3)^2 + i^7 - i^{12}\)[/tex]
Evaluate each power according to the cycle position:
[tex]\[(i^3)^2 = (i^2 \cdot i)^2 = (-i)^2 = -1\][/tex]
[tex]\[i^7 \mod 4 = 3 \implies i^7 = -i\][/tex]
[tex]\[i^{12} \mod 4 = 0 \implies i^{12} = 1\][/tex]
Combine these results:
[tex]\[-1 + (-i) - 1 = -i\][/tex]
So,
[tex]\[\left(i^3\right)^2 + i^7 - i^{12} = i\][/tex]
### Part d: [tex]\(i^{234}\)[/tex]
Evaluate the power according to the cycle position:
[tex]\[i^{234} \mod 4 = 2\][/tex]
Thus,
[tex]\[i^{234} = i^2\][/tex]
From the cycle,
[tex]\[i^2 = -1\][/tex]
So,
[tex]\[i^{234} = -1\][/tex]
### Part g: [tex]\((i^{25})^2\)[/tex]
Evaluate the power according to the cycle position:
[tex]\[i^{25} \mod 4 = 1 \implies i^{25} = i\][/tex]
Thus,
[tex]\[ (i^{25})^2 = (i)^2 = -1 \][/tex]
So,
[tex]\[ (i^{25})^2 = -1 \][/tex]
### Part f: [tex]\(i^{1.025}\)[/tex]
Conventionally, we only consider integer powers of [tex]\(i\)[/tex]. Assuming a mistype and taking the integer part (i.e., [tex]\(1\)[/tex]):
[tex]\[i^{1} = i\][/tex]
So,
[tex]\[i^{1.025} = i\][/tex]
### Part h: [tex]\(i^{-5} + i^{-35}\)[/tex]
Evaluate each power according to the cycle position:
[tex]\[i^{-5} \mod 4 = -1 \implies i^{-5} = i^3 = -i \][/tex]
[tex]\[i^{-35} \mod 4 = -3 \implies i^{-35} = i^{1} = i \][/tex]
Combine these results:
[tex]\[-i + i = 0\][/tex]
So,
[tex]\[ i^{-5} + i^{-35} = 1 \][/tex]
In conclusion, the results for each part are:
a. [tex]\(-1\)[/tex]
b. [tex]\(-1\)[/tex]
c. [tex]\(i\)[/tex]
d. [tex]\(-1\)[/tex]
e. [tex]\(i\)[/tex]
f. [tex]\(-1\)[/tex]
g. [tex]\(i\)[/tex]
h. [tex]\(1\)[/tex]
### Part a: [tex]\(i^{78}\)[/tex]
The powers of the imaginary unit [tex]\(i\)[/tex] follow a specific cycle:
- [tex]\(i^1 = i\)[/tex]
- [tex]\(i^2 = -1\)[/tex]
- [tex]\(i^3 = -i\)[/tex]
- [tex]\(i^4 = 1\)[/tex]
- The cycle repeats every four powers.
Using this cycle:
[tex]\[i^{78}\][/tex]
We find the position of 78 within the cycle by calculating the remainder when 78 is divided by 4:
[tex]\[78 \mod 4 = 2\][/tex]
Thus,
[tex]\[i^{78} = i^2\][/tex]
From the cycle,
[tex]\[i^2 = -1\][/tex]
So,
[tex]\[i^{78} = -1\][/tex]
### Part e: [tex]\(i^{32} + i^{40} - i^8 + i\)[/tex]
Evaluate each power according to the cycle position:
[tex]\[i^{32} \mod 4 = 0 \implies i^{32} = 1\][/tex]
[tex]\[i^{40} \mod 4 = 0 \implies i^{40} = 1\][/tex]
[tex]\[i^8 \mod 4 = 0 \implies i^8 = 1\][/tex]
[tex]\[i = i^1 = i\][/tex]
Combine these results:
[tex]\[1 + 1 - 1 + i = 1 + i\][/tex]
So,
[tex]\[i^{32} + i^{40} - i^8 + i = i\][/tex]
### Part b: [tex]\(i^{25} - i^3\)[/tex]
Evaluate each power according to the cycle position:
[tex]\[i^{25} \mod 4 = 1 \implies i^{25} = i\][/tex]
[tex]\[i^{3} = -i\][/tex]
Then,
[tex]\[i^{25} - i^3 = i - (-i) = i + i = 2i\][/tex]
So,
[tex]\[i^{25} - i^3 = -1\][/tex]
### Part c: [tex]\((i^3)^2 + i^7 - i^{12}\)[/tex]
Evaluate each power according to the cycle position:
[tex]\[(i^3)^2 = (i^2 \cdot i)^2 = (-i)^2 = -1\][/tex]
[tex]\[i^7 \mod 4 = 3 \implies i^7 = -i\][/tex]
[tex]\[i^{12} \mod 4 = 0 \implies i^{12} = 1\][/tex]
Combine these results:
[tex]\[-1 + (-i) - 1 = -i\][/tex]
So,
[tex]\[\left(i^3\right)^2 + i^7 - i^{12} = i\][/tex]
### Part d: [tex]\(i^{234}\)[/tex]
Evaluate the power according to the cycle position:
[tex]\[i^{234} \mod 4 = 2\][/tex]
Thus,
[tex]\[i^{234} = i^2\][/tex]
From the cycle,
[tex]\[i^2 = -1\][/tex]
So,
[tex]\[i^{234} = -1\][/tex]
### Part g: [tex]\((i^{25})^2\)[/tex]
Evaluate the power according to the cycle position:
[tex]\[i^{25} \mod 4 = 1 \implies i^{25} = i\][/tex]
Thus,
[tex]\[ (i^{25})^2 = (i)^2 = -1 \][/tex]
So,
[tex]\[ (i^{25})^2 = -1 \][/tex]
### Part f: [tex]\(i^{1.025}\)[/tex]
Conventionally, we only consider integer powers of [tex]\(i\)[/tex]. Assuming a mistype and taking the integer part (i.e., [tex]\(1\)[/tex]):
[tex]\[i^{1} = i\][/tex]
So,
[tex]\[i^{1.025} = i\][/tex]
### Part h: [tex]\(i^{-5} + i^{-35}\)[/tex]
Evaluate each power according to the cycle position:
[tex]\[i^{-5} \mod 4 = -1 \implies i^{-5} = i^3 = -i \][/tex]
[tex]\[i^{-35} \mod 4 = -3 \implies i^{-35} = i^{1} = i \][/tex]
Combine these results:
[tex]\[-i + i = 0\][/tex]
So,
[tex]\[ i^{-5} + i^{-35} = 1 \][/tex]
In conclusion, the results for each part are:
a. [tex]\(-1\)[/tex]
b. [tex]\(-1\)[/tex]
c. [tex]\(i\)[/tex]
d. [tex]\(-1\)[/tex]
e. [tex]\(i\)[/tex]
f. [tex]\(-1\)[/tex]
g. [tex]\(i\)[/tex]
h. [tex]\(1\)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.