Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's rewrite the given equation:
[tex]\[ x^2 + 16x + y^2 - 16y = -112 \][/tex]
We aim to rewrite it in the center-radius form of the equation of a circle, which has the form:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Here are the steps to achieve this form:
1. Group and complete the square for the [tex]\(x\)[/tex] terms:
[tex]\[ x^2 + 16x \][/tex]
Completing the square involves adding and subtracting the same value. To complete the square for [tex]\(x^2 + 16x\)[/tex]:
- Take half of 16, which is 8.
- Square it to get 64.
So,
[tex]\[ x^2 + 16x = (x + 8)^2 - 64 \][/tex]
2. Group and complete the square for the [tex]\(y\)[/tex] terms:
[tex]\[ y^2 - 16y \][/tex]
Similarly, complete the square for [tex]\(y^2 - 16y\)[/tex]:
- Take half of -16, which is -8.
- Square it to get 64.
So,
[tex]\[ y^2 - 16y = (y - 8)^2 - 64 \][/tex]
3. Substitute back into the original equation:
The equation now looks like this:
[tex]\[ (x + 8)^2 - 64 + (y - 8)^2 - 64 = -112 \][/tex]
4. Combine like terms:
[tex]\[ (x + 8)^2 + (y - 8)^2 - 128 = -112 \][/tex]
5. Solve for the constant term:
Adding 128 to both sides gives:
[tex]\[ (x + 8)^2 + (y - 8)^2 = 16 \][/tex]
Thus, we have successfully rewritten the given equation in the center-radius form of a circle:
[tex]\[ (x + 8)^2 + (y - 8)^2 = 16 \][/tex]
Comparing this with the given multiple choice options, we find that the correct answer is:
[tex]\[ \text{B. } (x + 8)^2 + (y - 8)^2 = 16 \][/tex]
[tex]\[ x^2 + 16x + y^2 - 16y = -112 \][/tex]
We aim to rewrite it in the center-radius form of the equation of a circle, which has the form:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Here are the steps to achieve this form:
1. Group and complete the square for the [tex]\(x\)[/tex] terms:
[tex]\[ x^2 + 16x \][/tex]
Completing the square involves adding and subtracting the same value. To complete the square for [tex]\(x^2 + 16x\)[/tex]:
- Take half of 16, which is 8.
- Square it to get 64.
So,
[tex]\[ x^2 + 16x = (x + 8)^2 - 64 \][/tex]
2. Group and complete the square for the [tex]\(y\)[/tex] terms:
[tex]\[ y^2 - 16y \][/tex]
Similarly, complete the square for [tex]\(y^2 - 16y\)[/tex]:
- Take half of -16, which is -8.
- Square it to get 64.
So,
[tex]\[ y^2 - 16y = (y - 8)^2 - 64 \][/tex]
3. Substitute back into the original equation:
The equation now looks like this:
[tex]\[ (x + 8)^2 - 64 + (y - 8)^2 - 64 = -112 \][/tex]
4. Combine like terms:
[tex]\[ (x + 8)^2 + (y - 8)^2 - 128 = -112 \][/tex]
5. Solve for the constant term:
Adding 128 to both sides gives:
[tex]\[ (x + 8)^2 + (y - 8)^2 = 16 \][/tex]
Thus, we have successfully rewritten the given equation in the center-radius form of a circle:
[tex]\[ (x + 8)^2 + (y - 8)^2 = 16 \][/tex]
Comparing this with the given multiple choice options, we find that the correct answer is:
[tex]\[ \text{B. } (x + 8)^2 + (y - 8)^2 = 16 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.