Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's analyze the given quadratic function:
[tex]\[ g(x) = -2x^2 - 4x - 4 \][/tex]
### Step-by-Step Solution
1. Determine if the function has a maximum or minimum value:
- The quadratic function is in the standard form [tex]\( g(x) = ax^2 + bx + c \)[/tex].
- Here, the coefficient of [tex]\( x^2 \)[/tex], which is [tex]\( a \)[/tex], is [tex]\(-2\)[/tex].
- Since [tex]\( a \)[/tex] is negative ([tex]\( a < 0 \)[/tex]), the parabola opens downwards.
- Therefore, the function has a maximum value.
2. Find the x-coordinate of the vertex where the maximum value occurs:
- The x-coordinate of the vertex of a quadratic function [tex]\( ax^2 + bx + c \)[/tex] is given by:
[tex]\[ x = \frac{-b}{2a} \][/tex]
- Substitute [tex]\( a = -2 \)[/tex] and [tex]\( b = -4 \)[/tex]:
[tex]\[ x = \frac{-(-4)}{2(-2)} = \frac{4}{-4} = -1 \][/tex]
3. Find the maximum value of the function:
- Substitute [tex]\( x = -1 \)[/tex] back into the quadratic function [tex]\( g(x) \)[/tex]:
[tex]\[ g(-1) = -2(-1)^2 - 4(-1) - 4 \][/tex]
- Calculate each term:
[tex]\[ g(-1) = -2(1) - 4(-1) - 4 = -2 + 4 - 4 = -2 \][/tex]
### Answers
Does the function have a minimum or maximum value?
- Maximum
Where does the minimum or maximum value occur?
[tex]\[ x = -1 \][/tex]
What is the function's minimum or maximum value?
[tex]\[ \boxed{-2} \][/tex]
Therefore, the function has a maximum value which occurs at [tex]\( x = -1 \)[/tex] and its maximum value is [tex]\(-2\)[/tex].
[tex]\[ g(x) = -2x^2 - 4x - 4 \][/tex]
### Step-by-Step Solution
1. Determine if the function has a maximum or minimum value:
- The quadratic function is in the standard form [tex]\( g(x) = ax^2 + bx + c \)[/tex].
- Here, the coefficient of [tex]\( x^2 \)[/tex], which is [tex]\( a \)[/tex], is [tex]\(-2\)[/tex].
- Since [tex]\( a \)[/tex] is negative ([tex]\( a < 0 \)[/tex]), the parabola opens downwards.
- Therefore, the function has a maximum value.
2. Find the x-coordinate of the vertex where the maximum value occurs:
- The x-coordinate of the vertex of a quadratic function [tex]\( ax^2 + bx + c \)[/tex] is given by:
[tex]\[ x = \frac{-b}{2a} \][/tex]
- Substitute [tex]\( a = -2 \)[/tex] and [tex]\( b = -4 \)[/tex]:
[tex]\[ x = \frac{-(-4)}{2(-2)} = \frac{4}{-4} = -1 \][/tex]
3. Find the maximum value of the function:
- Substitute [tex]\( x = -1 \)[/tex] back into the quadratic function [tex]\( g(x) \)[/tex]:
[tex]\[ g(-1) = -2(-1)^2 - 4(-1) - 4 \][/tex]
- Calculate each term:
[tex]\[ g(-1) = -2(1) - 4(-1) - 4 = -2 + 4 - 4 = -2 \][/tex]
### Answers
Does the function have a minimum or maximum value?
- Maximum
Where does the minimum or maximum value occur?
[tex]\[ x = -1 \][/tex]
What is the function's minimum or maximum value?
[tex]\[ \boxed{-2} \][/tex]
Therefore, the function has a maximum value which occurs at [tex]\( x = -1 \)[/tex] and its maximum value is [tex]\(-2\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.