Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the exact value of [tex]\(\cot \frac{5\pi}{4}\)[/tex], we must understand what cotangent represents. Cotangent is the reciprocal of the tangent function.
Given:
[tex]\[ \cot \frac{5\pi}{4} = \frac{1}{\tan \frac{5\pi}{4}} \][/tex]
First, we need to determine the value of [tex]\(\tan \frac{5\pi}{4}\)[/tex].
1. Reference Angle:
The angle [tex]\(\frac{5\pi}{4}\)[/tex] is in the third quadrant of the unit circle, where both sine and cosine are negative. The reference angle is:
[tex]\[ \pi - \frac{5\pi}{4} = \frac{5\pi}{4} - \pi = \frac{\pi}{4} \][/tex]
2. Tangent in the Third Quadrant:
Since [tex]\(\frac{5\pi}{4}\)[/tex] is in the third quadrant, where tangent is positive (both sine and cosine are negative, and negative divided by negative is positive):
[tex]\[ \tan \frac{5\pi}{4} = \tan \frac{\pi}{4} = 1 \][/tex]
Therefore:
[tex]\[ \cot \frac{5\pi}{4} = \frac{1}{\tan \frac{5\pi}{4}} = \frac{1}{1} = 1 \][/tex]
Hence,
[tex]\[ \cot \frac{5\pi}{4} = 1 \][/tex]
Thus, the exact value of [tex]\(\cot \frac{5\pi}{4}\)[/tex] is [tex]\(1\)[/tex].
Given:
[tex]\[ \cot \frac{5\pi}{4} = \frac{1}{\tan \frac{5\pi}{4}} \][/tex]
First, we need to determine the value of [tex]\(\tan \frac{5\pi}{4}\)[/tex].
1. Reference Angle:
The angle [tex]\(\frac{5\pi}{4}\)[/tex] is in the third quadrant of the unit circle, where both sine and cosine are negative. The reference angle is:
[tex]\[ \pi - \frac{5\pi}{4} = \frac{5\pi}{4} - \pi = \frac{\pi}{4} \][/tex]
2. Tangent in the Third Quadrant:
Since [tex]\(\frac{5\pi}{4}\)[/tex] is in the third quadrant, where tangent is positive (both sine and cosine are negative, and negative divided by negative is positive):
[tex]\[ \tan \frac{5\pi}{4} = \tan \frac{\pi}{4} = 1 \][/tex]
Therefore:
[tex]\[ \cot \frac{5\pi}{4} = \frac{1}{\tan \frac{5\pi}{4}} = \frac{1}{1} = 1 \][/tex]
Hence,
[tex]\[ \cot \frac{5\pi}{4} = 1 \][/tex]
Thus, the exact value of [tex]\(\cot \frac{5\pi}{4}\)[/tex] is [tex]\(1\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.