Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the correct function representing the growth of the bacteria colony, we need to analyze the given information:
- The initial number of bacteria is 1500.
- The population increases at a rate of [tex]\( 115\% \)[/tex] each hour.
- [tex]\( x \)[/tex] represents the number of hours elapsed.
Since the population increases by [tex]\( 115\% \)[/tex] every hour, this means that each hour, the population is [tex]\( 115\% \)[/tex] of its current population in addition to the initial population. Mathematically speaking:
1. Converting the percentage rate to a decimal:
[tex]\[ 115\% = 1.15 \][/tex]
2. The population each hour is multiplied by a factor of [tex]\( 1.15 \)[/tex].
To express this growth, we use an exponential growth function of the form:
[tex]\[ f(x) = P_0 (\text{rate})^x \][/tex]
Where [tex]\( P_0 \)[/tex] is the initial population, the rate is the growth factor per unit time, and [tex]\( x \)[/tex] is the time in hours.
Substituting the given values (initial population [tex]\( P_0 = 1500 \)[/tex] and growth rate [tex]\( 1.15 \)[/tex]) into the function, we get:
[tex]\[ f(x) = 1500(1.15)^x \][/tex]
Now, let's compare this function to the given options:
1. [tex]\( f(x) = 1500(1.15)^x \)[/tex]
2. [tex]\( f(x) = 1500(115)^x \)[/tex]
3. [tex]\( f(x) = 1500(2.15)^x \)[/tex]
4. [tex]\( f(x) = 1500(215)^x \)[/tex]
The correct representation is option 1:
[tex]\[ f(x) = 1500(1.15)^x \][/tex]
Therefore, the function that correctly represents the scenario where the bacteria population increases by [tex]\( 115\% \)[/tex] each hour is:
[tex]\[ \boxed{f(x) = 1500(1.15)^x} \][/tex]
- The initial number of bacteria is 1500.
- The population increases at a rate of [tex]\( 115\% \)[/tex] each hour.
- [tex]\( x \)[/tex] represents the number of hours elapsed.
Since the population increases by [tex]\( 115\% \)[/tex] every hour, this means that each hour, the population is [tex]\( 115\% \)[/tex] of its current population in addition to the initial population. Mathematically speaking:
1. Converting the percentage rate to a decimal:
[tex]\[ 115\% = 1.15 \][/tex]
2. The population each hour is multiplied by a factor of [tex]\( 1.15 \)[/tex].
To express this growth, we use an exponential growth function of the form:
[tex]\[ f(x) = P_0 (\text{rate})^x \][/tex]
Where [tex]\( P_0 \)[/tex] is the initial population, the rate is the growth factor per unit time, and [tex]\( x \)[/tex] is the time in hours.
Substituting the given values (initial population [tex]\( P_0 = 1500 \)[/tex] and growth rate [tex]\( 1.15 \)[/tex]) into the function, we get:
[tex]\[ f(x) = 1500(1.15)^x \][/tex]
Now, let's compare this function to the given options:
1. [tex]\( f(x) = 1500(1.15)^x \)[/tex]
2. [tex]\( f(x) = 1500(115)^x \)[/tex]
3. [tex]\( f(x) = 1500(2.15)^x \)[/tex]
4. [tex]\( f(x) = 1500(215)^x \)[/tex]
The correct representation is option 1:
[tex]\[ f(x) = 1500(1.15)^x \][/tex]
Therefore, the function that correctly represents the scenario where the bacteria population increases by [tex]\( 115\% \)[/tex] each hour is:
[tex]\[ \boxed{f(x) = 1500(1.15)^x} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.