Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the problem [tex]\(\cos^{-1}\left(\cos 43^{\circ}\right)\)[/tex], we need to understand the properties of the cosine function and its inverse.
1. Understanding the Range of Cosine and its Inverse:
- The cosine function, [tex]\(\cos(\theta)\)[/tex], is defined for all angles [tex]\(\theta\)[/tex].
- The inverse cosine function, [tex]\(\cos^{-1}(x)\)[/tex], also known as arccos, returns an angle [tex]\(\theta\)[/tex] such that [tex]\(0^\circ \leq \theta \leq 180^\circ\)[/tex].
2. Cosine is One-to-One in the Range of Arccos:
- The cosine function is one-to-one in the interval [tex]\([0^\circ, 180^\circ]\)[/tex].
- Therefore, for any angle [tex]\(\theta\)[/tex] in this interval, [tex]\(\cos^{-1}(\cos(\theta)) = \theta\)[/tex].
3. Given Angle within the Required Range:
- We are given the angle [tex]\(43^\circ\)[/tex].
- Since [tex]\(43^\circ\)[/tex] falls within the interval [tex]\([0^\circ, 180^\circ]\)[/tex], we can directly apply the property stated above.
4. Applying the Property:
- For [tex]\(\theta = 43^\circ\)[/tex], we use the relationship [tex]\(\cos^{-1}(\cos(\theta)) = \theta\)[/tex].
- Hence, [tex]\(\cos^{-1}(\cos(43^\circ)) = 43^\circ\)[/tex].
Therefore, the value is:
[tex]\[ \cos^{-1}\left(\cos 43^\circ\right) = 43^\circ \][/tex]
1. Understanding the Range of Cosine and its Inverse:
- The cosine function, [tex]\(\cos(\theta)\)[/tex], is defined for all angles [tex]\(\theta\)[/tex].
- The inverse cosine function, [tex]\(\cos^{-1}(x)\)[/tex], also known as arccos, returns an angle [tex]\(\theta\)[/tex] such that [tex]\(0^\circ \leq \theta \leq 180^\circ\)[/tex].
2. Cosine is One-to-One in the Range of Arccos:
- The cosine function is one-to-one in the interval [tex]\([0^\circ, 180^\circ]\)[/tex].
- Therefore, for any angle [tex]\(\theta\)[/tex] in this interval, [tex]\(\cos^{-1}(\cos(\theta)) = \theta\)[/tex].
3. Given Angle within the Required Range:
- We are given the angle [tex]\(43^\circ\)[/tex].
- Since [tex]\(43^\circ\)[/tex] falls within the interval [tex]\([0^\circ, 180^\circ]\)[/tex], we can directly apply the property stated above.
4. Applying the Property:
- For [tex]\(\theta = 43^\circ\)[/tex], we use the relationship [tex]\(\cos^{-1}(\cos(\theta)) = \theta\)[/tex].
- Hence, [tex]\(\cos^{-1}(\cos(43^\circ)) = 43^\circ\)[/tex].
Therefore, the value is:
[tex]\[ \cos^{-1}\left(\cos 43^\circ\right) = 43^\circ \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.