At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the equation [tex]\( \frac{1}{3(x+7)} - \frac{1}{2(x+1)} = -6 \)[/tex], where [tex]\( x \)[/tex] represents the number of months, follow these steps:
1. Rewrite the equation:
[tex]\[ \frac{1}{3(x+7)} - \frac{1}{2(x+1)} = -6 \][/tex]
2. Find a common denominator for the fractions on the left so that you can combine them. The terms are [tex]\( 3(x+7) \)[/tex] and [tex]\( 2(x+1) \)[/tex], so the common denominator is [tex]\( 6(x+7)(x+1) \)[/tex].
3. Rewrite each fraction with the common denominator:
[tex]\[ \frac{2(x+1)}{6(x+7)(x+1)} - \frac{3(x+7)}{6(x+7)(x+1)} = -6 \][/tex]
4. Combine the fractions:
[tex]\[ \frac{2(x+1) - 3(x+7)}{6(x+7)(x+1)} = -6 \][/tex]
5. Simplify the numerator:
[tex]\[ 2(x + 1) - 3(x + 7) = 2x + 2 - 3x - 21 = -x - 19 \][/tex]
So, the equation becomes:
[tex]\[ \frac{-x - 19}{6(x+7)(x+1)} = -6 \][/tex]
6. Eliminate the denominator by multiplying both sides of the equation by [tex]\( 6(x+7)(x+1) \)[/tex]:
[tex]\[ -x - 19 = -6 \cdot 6(x+7)(x+1) \][/tex]
[tex]\[ -x - 19 = -36(x^2 + 8x + 7) \][/tex]
7. Simplify the right side:
[tex]\[ -x - 19 = -36x^2 - 288x - 252 \][/tex]
8. Move all terms to one side to form a standard quadratic equation:
[tex]\[ -36x^2 - 288x - 252 + x + 19 = 0 \][/tex]
[tex]\[ -36x^2 - 287x - 233 = 0 \][/tex]
Multiply through by [tex]\(-1\)[/tex] to make the coefficients positive:
[tex]\[ 36x^2 + 287x + 233 = 0 \][/tex]
9. Solve the quadratic equation: [tex]\( 36x^2 + 287x + 233 = 0 \)[/tex]. To do this, we use the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 36 \)[/tex], [tex]\( b = 287 \)[/tex], and [tex]\( c = 233 \)[/tex].
The solutions given in the result are already simplified and are:
[tex]\[ x = \frac{-287 - \sqrt{48817}}{72} \quad \text{and} \quad x = \frac{-287 + \sqrt{48817}}{72} \][/tex]
Therefore, the number of months Michael will have to pay on the car corresponds to the roots of this equation, which are:
[tex]\[ x = \frac{-287 - \sqrt{48817}}{72} \quad \text{and} \quad x = \frac{-287 + \sqrt{48817}}{72} \][/tex]
1. Rewrite the equation:
[tex]\[ \frac{1}{3(x+7)} - \frac{1}{2(x+1)} = -6 \][/tex]
2. Find a common denominator for the fractions on the left so that you can combine them. The terms are [tex]\( 3(x+7) \)[/tex] and [tex]\( 2(x+1) \)[/tex], so the common denominator is [tex]\( 6(x+7)(x+1) \)[/tex].
3. Rewrite each fraction with the common denominator:
[tex]\[ \frac{2(x+1)}{6(x+7)(x+1)} - \frac{3(x+7)}{6(x+7)(x+1)} = -6 \][/tex]
4. Combine the fractions:
[tex]\[ \frac{2(x+1) - 3(x+7)}{6(x+7)(x+1)} = -6 \][/tex]
5. Simplify the numerator:
[tex]\[ 2(x + 1) - 3(x + 7) = 2x + 2 - 3x - 21 = -x - 19 \][/tex]
So, the equation becomes:
[tex]\[ \frac{-x - 19}{6(x+7)(x+1)} = -6 \][/tex]
6. Eliminate the denominator by multiplying both sides of the equation by [tex]\( 6(x+7)(x+1) \)[/tex]:
[tex]\[ -x - 19 = -6 \cdot 6(x+7)(x+1) \][/tex]
[tex]\[ -x - 19 = -36(x^2 + 8x + 7) \][/tex]
7. Simplify the right side:
[tex]\[ -x - 19 = -36x^2 - 288x - 252 \][/tex]
8. Move all terms to one side to form a standard quadratic equation:
[tex]\[ -36x^2 - 288x - 252 + x + 19 = 0 \][/tex]
[tex]\[ -36x^2 - 287x - 233 = 0 \][/tex]
Multiply through by [tex]\(-1\)[/tex] to make the coefficients positive:
[tex]\[ 36x^2 + 287x + 233 = 0 \][/tex]
9. Solve the quadratic equation: [tex]\( 36x^2 + 287x + 233 = 0 \)[/tex]. To do this, we use the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 36 \)[/tex], [tex]\( b = 287 \)[/tex], and [tex]\( c = 233 \)[/tex].
The solutions given in the result are already simplified and are:
[tex]\[ x = \frac{-287 - \sqrt{48817}}{72} \quad \text{and} \quad x = \frac{-287 + \sqrt{48817}}{72} \][/tex]
Therefore, the number of months Michael will have to pay on the car corresponds to the roots of this equation, which are:
[tex]\[ x = \frac{-287 - \sqrt{48817}}{72} \quad \text{and} \quad x = \frac{-287 + \sqrt{48817}}{72} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.