Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find a polynomial function of degree 3 with the given numbers as zeros and assuming the leading coefficient is 1, we follow these steps:
### Step 1: Identify the zeros
The zeros of the polynomial are [tex]\( \sqrt{3} \)[/tex], [tex]\( -\sqrt{3} \)[/tex], and [tex]\( 6 \)[/tex].
### Step 2: Write the polynomial in factored form
Since the zeros of the polynomial are [tex]\( \sqrt{3} \)[/tex], [tex]\( -\sqrt{3} \)[/tex], and [tex]\( 6 \)[/tex], the polynomial can be written in its factored form as:
[tex]\[ f(x) = (x - \sqrt{3})(x + \sqrt{3})(x - 6) \][/tex]
### Step 3: Expand the polynomial
First, we start by multiplying the first two factors, [tex]\((x - \sqrt{3})(x + \sqrt{3})\)[/tex].
Recall the difference of squares formula, [tex]\((a - b)(a + b) = a^2 - b^2\)[/tex]:
[tex]\[ (x - \sqrt{3})(x + \sqrt{3}) = x^2 - (\sqrt{3})^2 = x^2 - 3 \][/tex]
Next, multiply [tex]\((x^2 - 3)\)[/tex] by the remaining factor, [tex]\((x - 6)\)[/tex]:
[tex]\[ (x^2 - 3)(x - 6) \][/tex]
To expand this, we distribute [tex]\(x^2 - 3\)[/tex] to each term inside the parentheses:
[tex]\[ (x^2 - 3)(x - 6) = x^2(x - 6) - 3(x - 6) \][/tex]
Now, distribute each term:
[tex]\[ = x^3 - 6x^2 - 3x + 18 \][/tex]
Thus, the polynomial in expanded form is:
[tex]\[ f(x) = x^3 - 6x^2 - 3x + 18 \][/tex]
### Step 4: Write the final polynomial
Combining the expanded terms, the final polynomial function of degree 3 with the given zeros [tex]\( \sqrt{3} \)[/tex], [tex]\( -\sqrt{3} \)[/tex], and [tex]\( 6 \)[/tex], and a leading coefficient of 1, is:
[tex]\[ f(x) = 1.0x^3 - 9.46410161513776x^2 + 23.7846096908265x - 18.0 \][/tex]
This is the polynomial function that satisfies the given conditions.
### Step 1: Identify the zeros
The zeros of the polynomial are [tex]\( \sqrt{3} \)[/tex], [tex]\( -\sqrt{3} \)[/tex], and [tex]\( 6 \)[/tex].
### Step 2: Write the polynomial in factored form
Since the zeros of the polynomial are [tex]\( \sqrt{3} \)[/tex], [tex]\( -\sqrt{3} \)[/tex], and [tex]\( 6 \)[/tex], the polynomial can be written in its factored form as:
[tex]\[ f(x) = (x - \sqrt{3})(x + \sqrt{3})(x - 6) \][/tex]
### Step 3: Expand the polynomial
First, we start by multiplying the first two factors, [tex]\((x - \sqrt{3})(x + \sqrt{3})\)[/tex].
Recall the difference of squares formula, [tex]\((a - b)(a + b) = a^2 - b^2\)[/tex]:
[tex]\[ (x - \sqrt{3})(x + \sqrt{3}) = x^2 - (\sqrt{3})^2 = x^2 - 3 \][/tex]
Next, multiply [tex]\((x^2 - 3)\)[/tex] by the remaining factor, [tex]\((x - 6)\)[/tex]:
[tex]\[ (x^2 - 3)(x - 6) \][/tex]
To expand this, we distribute [tex]\(x^2 - 3\)[/tex] to each term inside the parentheses:
[tex]\[ (x^2 - 3)(x - 6) = x^2(x - 6) - 3(x - 6) \][/tex]
Now, distribute each term:
[tex]\[ = x^3 - 6x^2 - 3x + 18 \][/tex]
Thus, the polynomial in expanded form is:
[tex]\[ f(x) = x^3 - 6x^2 - 3x + 18 \][/tex]
### Step 4: Write the final polynomial
Combining the expanded terms, the final polynomial function of degree 3 with the given zeros [tex]\( \sqrt{3} \)[/tex], [tex]\( -\sqrt{3} \)[/tex], and [tex]\( 6 \)[/tex], and a leading coefficient of 1, is:
[tex]\[ f(x) = 1.0x^3 - 9.46410161513776x^2 + 23.7846096908265x - 18.0 \][/tex]
This is the polynomial function that satisfies the given conditions.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.