Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the zeros of the quadratic equation [tex]\( y = x^2 - 6x - 4 \)[/tex] by completing the square, we will transform the equation into a form that makes it easier to solve. Here are the detailed steps:
1. Start with the given equation:
[tex]\[ y = x^2 - 6x - 4 \][/tex]
2. Set [tex]\( y \)[/tex] to 0 to find the zeros:
[tex]\[ 0 = x^2 - 6x - 4 \][/tex]
3. Move the constant term to the right side:
[tex]\[ x^2 - 6x = 4 \][/tex]
4. Complete the square on the left side. To do this, take half of the coefficient of [tex]\( x \)[/tex], square it, and add it to both sides of the equation. The coefficient of [tex]\( x \)[/tex] is [tex]\(-6\)[/tex], half of [tex]\(-6\)[/tex] is [tex]\(-3\)[/tex], and squaring [tex]\(-3\)[/tex] gives [tex]\(9\)[/tex]:
[tex]\[ x^2 - 6x + 9 = 4 + 9 \][/tex]
[tex]\[ (x - 3)^2 = 13 \][/tex]
5. Take the square root of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x - 3 = \pm \sqrt{13} \][/tex]
6. Solve for [tex]\( x \)[/tex] by isolating it:
[tex]\[ x = 3 \pm \sqrt{13} \][/tex]
The zeros of the quadratic equation [tex]\( y = x^2 - 6x - 4 \)[/tex] are:
[tex]\[ x = 3 - \sqrt{13} \][/tex]
[tex]\[ x = 3 + \sqrt{13} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{C. \; x = 3 \pm \sqrt{13}} \][/tex]
1. Start with the given equation:
[tex]\[ y = x^2 - 6x - 4 \][/tex]
2. Set [tex]\( y \)[/tex] to 0 to find the zeros:
[tex]\[ 0 = x^2 - 6x - 4 \][/tex]
3. Move the constant term to the right side:
[tex]\[ x^2 - 6x = 4 \][/tex]
4. Complete the square on the left side. To do this, take half of the coefficient of [tex]\( x \)[/tex], square it, and add it to both sides of the equation. The coefficient of [tex]\( x \)[/tex] is [tex]\(-6\)[/tex], half of [tex]\(-6\)[/tex] is [tex]\(-3\)[/tex], and squaring [tex]\(-3\)[/tex] gives [tex]\(9\)[/tex]:
[tex]\[ x^2 - 6x + 9 = 4 + 9 \][/tex]
[tex]\[ (x - 3)^2 = 13 \][/tex]
5. Take the square root of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x - 3 = \pm \sqrt{13} \][/tex]
6. Solve for [tex]\( x \)[/tex] by isolating it:
[tex]\[ x = 3 \pm \sqrt{13} \][/tex]
The zeros of the quadratic equation [tex]\( y = x^2 - 6x - 4 \)[/tex] are:
[tex]\[ x = 3 - \sqrt{13} \][/tex]
[tex]\[ x = 3 + \sqrt{13} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{C. \; x = 3 \pm \sqrt{13}} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.