Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find a polynomial function of degree 3 with given zeros [tex]\(5 - \sqrt{2}, 5 + \sqrt{2},\)[/tex] and [tex]\(-10\)[/tex], we follow these steps:
### Step 1: Use the fact that the polynomial can be written in terms of its zeros
If a polynomial has zeros [tex]\(r_1, r_2, \ldots, r_n\)[/tex], it can be expressed as:
[tex]\[ P(x) = a(x - r_1)(x - r_2) \ldots (x - r_n) \][/tex]
Given that the leading coefficient is 1, our polynomial function will be:
[tex]\[ P(x) = (x - (5 - \sqrt{2}))(x - (5 + \sqrt{2}))(x - (-10)) \][/tex]
[tex]\[ P(x) = (x - 5 + \sqrt{2})(x - 5 - \sqrt{2})(x + 10) \][/tex]
### Step 2: Simplify the polynomial by multiplying the factors
First, we will simplify the product of the first two factors. Notice that these factors are of the form [tex]\((a - b)(a + b)\)[/tex], which is a difference of squares:
[tex]\[ (x - 5 + \sqrt{2})(x - 5 - \sqrt{2}) = ((x - 5) + \sqrt{2})((x - 5) - \sqrt{2}) \][/tex]
[tex]\[ = (x - 5)^2 - (\sqrt{2})^2 \][/tex]
[tex]\[ = (x - 5)^2 - 2 \][/tex]
Next, we expand [tex]\((x - 5)^2\)[/tex]:
[tex]\[ (x - 5)^2 = x^2 - 2 \cdot 5 \cdot x + 5^2 \][/tex]
[tex]\[ = x^2 - 10x + 25 \][/tex]
Now, substitute this back into the expression:
[tex]\[ (x - 5)^2 - 2 = x^2 - 10x + 25 - 2 \][/tex]
[tex]\[ = x^2 - 10x + 23 \][/tex]
Now, we have:
[tex]\[ P(x) = (x^2 - 10x + 23)(x + 10) \][/tex]
### Step 3: Expand the simplified product
[tex]\[ P(x) = (x^2 - 10x + 23)(x + 10) \][/tex]
We distribute each term in [tex]\((x + 10)\)[/tex] through the quadratic polynomial [tex]\(x^2 - 10x + 23\)[/tex]:
[tex]\[ P(x) = x^2(x + 10) + (-10x)(x + 10) + 23(x + 10) \][/tex]
Simplify each product:
[tex]\[ P(x) = x^3 + 10x^2 - 10x^2 - 100x + 23x + 230 \][/tex]
Combine like terms:
[tex]\[ P(x) = x^3 + (10x^2 - 10x^2) + (-100x + 23x) + 230 \][/tex]
[tex]\[ P(x) = x^3 - 77x + 230 \][/tex]
### Final Polynomial
[tex]\[ P(x) = x^3 - 77x + 230 \][/tex]
Thus, the polynomial function of degree 3 with the given zeros [tex]\(5 - \sqrt{2}, 5 + \sqrt{2},\)[/tex] and [tex]\(-10\)[/tex] is:
[tex]\[ P(x) = x^3 - 77x + 230 \][/tex]
### Step 1: Use the fact that the polynomial can be written in terms of its zeros
If a polynomial has zeros [tex]\(r_1, r_2, \ldots, r_n\)[/tex], it can be expressed as:
[tex]\[ P(x) = a(x - r_1)(x - r_2) \ldots (x - r_n) \][/tex]
Given that the leading coefficient is 1, our polynomial function will be:
[tex]\[ P(x) = (x - (5 - \sqrt{2}))(x - (5 + \sqrt{2}))(x - (-10)) \][/tex]
[tex]\[ P(x) = (x - 5 + \sqrt{2})(x - 5 - \sqrt{2})(x + 10) \][/tex]
### Step 2: Simplify the polynomial by multiplying the factors
First, we will simplify the product of the first two factors. Notice that these factors are of the form [tex]\((a - b)(a + b)\)[/tex], which is a difference of squares:
[tex]\[ (x - 5 + \sqrt{2})(x - 5 - \sqrt{2}) = ((x - 5) + \sqrt{2})((x - 5) - \sqrt{2}) \][/tex]
[tex]\[ = (x - 5)^2 - (\sqrt{2})^2 \][/tex]
[tex]\[ = (x - 5)^2 - 2 \][/tex]
Next, we expand [tex]\((x - 5)^2\)[/tex]:
[tex]\[ (x - 5)^2 = x^2 - 2 \cdot 5 \cdot x + 5^2 \][/tex]
[tex]\[ = x^2 - 10x + 25 \][/tex]
Now, substitute this back into the expression:
[tex]\[ (x - 5)^2 - 2 = x^2 - 10x + 25 - 2 \][/tex]
[tex]\[ = x^2 - 10x + 23 \][/tex]
Now, we have:
[tex]\[ P(x) = (x^2 - 10x + 23)(x + 10) \][/tex]
### Step 3: Expand the simplified product
[tex]\[ P(x) = (x^2 - 10x + 23)(x + 10) \][/tex]
We distribute each term in [tex]\((x + 10)\)[/tex] through the quadratic polynomial [tex]\(x^2 - 10x + 23\)[/tex]:
[tex]\[ P(x) = x^2(x + 10) + (-10x)(x + 10) + 23(x + 10) \][/tex]
Simplify each product:
[tex]\[ P(x) = x^3 + 10x^2 - 10x^2 - 100x + 23x + 230 \][/tex]
Combine like terms:
[tex]\[ P(x) = x^3 + (10x^2 - 10x^2) + (-100x + 23x) + 230 \][/tex]
[tex]\[ P(x) = x^3 - 77x + 230 \][/tex]
### Final Polynomial
[tex]\[ P(x) = x^3 - 77x + 230 \][/tex]
Thus, the polynomial function of degree 3 with the given zeros [tex]\(5 - \sqrt{2}, 5 + \sqrt{2},\)[/tex] and [tex]\(-10\)[/tex] is:
[tex]\[ P(x) = x^3 - 77x + 230 \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.