Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the remaining zero(s) of a polynomial of degree 4 with rational coefficients, we need to consider the properties of polynomials with such coefficients. Specifically, if a polynomial has rational coefficients and an irrational number as a zero, its conjugate must also be a zero of the polynomial.
Given zeros:
- -1 (a rational number)
- [tex]\(\sqrt{2}\)[/tex] (an irrational number)
- [tex]\(\frac{5}{3}\)[/tex] (a rational number)
Since [tex]\(\sqrt{2}\)[/tex] is an irrational number, its conjugate [tex]\(-\sqrt{2}\)[/tex] must also be a zero of the polynomial to ensure that the polynomial has rational coefficients.
Therefore, the four zeros of the polynomial are:
- [tex]\(-1\)[/tex]
- [tex]\(\sqrt{2}\)[/tex]
- [tex]\(\frac{5}{3}\)[/tex]
- [tex]\(-\sqrt{2}\)[/tex]
Putting it all together, the complete list of zeros for the polynomial is:
[tex]\[ -1, \sqrt{2}, \frac{5}{3}, -\sqrt{2} \][/tex]
Given zeros:
- -1 (a rational number)
- [tex]\(\sqrt{2}\)[/tex] (an irrational number)
- [tex]\(\frac{5}{3}\)[/tex] (a rational number)
Since [tex]\(\sqrt{2}\)[/tex] is an irrational number, its conjugate [tex]\(-\sqrt{2}\)[/tex] must also be a zero of the polynomial to ensure that the polynomial has rational coefficients.
Therefore, the four zeros of the polynomial are:
- [tex]\(-1\)[/tex]
- [tex]\(\sqrt{2}\)[/tex]
- [tex]\(\frac{5}{3}\)[/tex]
- [tex]\(-\sqrt{2}\)[/tex]
Putting it all together, the complete list of zeros for the polynomial is:
[tex]\[ -1, \sqrt{2}, \frac{5}{3}, -\sqrt{2} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.