At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve for the other zeros of a polynomial function of degree 4 with rational coefficients, given the zeros [tex]\(-i\)[/tex] and [tex]\(4 - \sqrt{5}\)[/tex], we utilize the properties of polynomials with rational coefficients.
A polynomial with rational coefficients must have zeros that occur in conjugate pairs if those zeros are irrational or complex. This implies that:
1. If [tex]\( -i \)[/tex] is a zero, its complex conjugate [tex]\( i \)[/tex] must also be a zero.
2. If [tex]\( 4 - \sqrt{5} \)[/tex] is a zero, its conjugate [tex]\( 4 + \sqrt{5} \)[/tex] must also be a zero.
Given [tex]\(-i\)[/tex] and [tex]\(4 - \sqrt{5}\)[/tex] as zeros, we therefore identify the following zeros as well:
- The complex conjugate of [tex]\(-i\)[/tex] is [tex]\(i\)[/tex].
- The conjugate of [tex]\(4 - \sqrt{5}\)[/tex] is [tex]\(4 + \sqrt{5}\)[/tex].
Thus, the zeros of the polynomial are:
- [tex]\(-i\)[/tex]
- [tex]\(i\)[/tex]
- [tex]\(4 - \sqrt{5}\)[/tex]
- [tex]\(4 + \sqrt{5}\)[/tex]
Therefore, the other zeros of the polynomial, in addition to [tex]\(-i\)[/tex] and [tex]\(4 - \sqrt{5}\)[/tex], are [tex]\(i\)[/tex] and [tex]\(4 + \sqrt{5}\)[/tex].
A polynomial with rational coefficients must have zeros that occur in conjugate pairs if those zeros are irrational or complex. This implies that:
1. If [tex]\( -i \)[/tex] is a zero, its complex conjugate [tex]\( i \)[/tex] must also be a zero.
2. If [tex]\( 4 - \sqrt{5} \)[/tex] is a zero, its conjugate [tex]\( 4 + \sqrt{5} \)[/tex] must also be a zero.
Given [tex]\(-i\)[/tex] and [tex]\(4 - \sqrt{5}\)[/tex] as zeros, we therefore identify the following zeros as well:
- The complex conjugate of [tex]\(-i\)[/tex] is [tex]\(i\)[/tex].
- The conjugate of [tex]\(4 - \sqrt{5}\)[/tex] is [tex]\(4 + \sqrt{5}\)[/tex].
Thus, the zeros of the polynomial are:
- [tex]\(-i\)[/tex]
- [tex]\(i\)[/tex]
- [tex]\(4 - \sqrt{5}\)[/tex]
- [tex]\(4 + \sqrt{5}\)[/tex]
Therefore, the other zeros of the polynomial, in addition to [tex]\(-i\)[/tex] and [tex]\(4 - \sqrt{5}\)[/tex], are [tex]\(i\)[/tex] and [tex]\(4 + \sqrt{5}\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.