Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the area of the parallelogram with one vertex at [tex]\( P \)[/tex] and sides formed by the vectors [tex]\( \overrightarrow{PQ} \)[/tex] and [tex]\( \overrightarrow{PR} \)[/tex], we can follow these steps:
1. Find the vectors [tex]\( \overrightarrow{PQ} \)[/tex] and [tex]\( \overrightarrow{PR} \)[/tex]:
[tex]\[ P = (0, 1, 1), \quad Q = (2, 0, -4), \quad R = (-3, -2, 1) \][/tex]
[tex]\[ \overrightarrow{PQ} = Q - P \implies (2 - 0, 0 - 1, -4 - 1) = (2, -1, -5) \][/tex]
[tex]\[ \overrightarrow{PR} = R - P \implies (-3 - 0, -2 - 1, 1 - 1) = (-3, -3, 0) \][/tex]
2. Calculate the cross product [tex]\( \overrightarrow{PQ} \times \overrightarrow{PR} \)[/tex]:
The cross product can be found using the determinant of a matrix composed of the unit vectors and the components of [tex]\( \overrightarrow{PQ} \)[/tex] and [tex]\( \overrightarrow{PR} \)[/tex]:
[tex]\[ \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & -5 \\ -3 & -3 & 0 \end{vmatrix} \][/tex]
Expanding this determinant, we get:
[tex]\[ \overrightarrow{PQ} \times \overrightarrow{PR} = \mathbf{i}((-1)(0) - (-5)(-3)) - \mathbf{j}((2)(0) - (-5)(-3)) + \mathbf{k}((2)(-3) - (-1)(-3)) \][/tex]
[tex]\[ = \mathbf{i}(0 - 15) - \mathbf{j}(0 - 15) + \mathbf{k}(-6 - 3) \][/tex]
[tex]\[ = \mathbf{i}(-15) - \mathbf{j}(-15) + \mathbf{k}(-9) \][/tex]
[tex]\[ = -15\mathbf{i} + 15\mathbf{j} - 9\mathbf{k} \][/tex]
Thus, the cross product is:
[tex]\[ \overrightarrow{PQ} \times \overrightarrow{PR} = (-15, 15, -9) \][/tex]
3. Find the magnitude of the cross product [tex]\( \lVert \overrightarrow{PQ} \times \overrightarrow{PR} \rVert \)[/tex]:
The magnitude of a vector [tex]\((a, b, c)\)[/tex] is given by:
[tex]\[ \lVert (a, b, c) \rVert = \sqrt{a^2 + b^2 + c^2} \][/tex]
Applying this to our cross product vector:
[tex]\[ \lVert (-15, 15, -9) \rVert = \sqrt{(-15)^2 + 15^2 + (-9)^2} \][/tex]
[tex]\[ = \sqrt{225 + 225 + 81} \][/tex]
[tex]\[ = \sqrt{531} \][/tex]
4. Understand that the area of the parallelogram is given by the magnitude of the cross product:
Thus, the area of the parallelogram is:
[tex]\[ \sqrt{531} \][/tex]
After simplification, this becomes:
[tex]\[ \text{The area of the parallelogram is } 3\sqrt{59}. \][/tex]
1. Find the vectors [tex]\( \overrightarrow{PQ} \)[/tex] and [tex]\( \overrightarrow{PR} \)[/tex]:
[tex]\[ P = (0, 1, 1), \quad Q = (2, 0, -4), \quad R = (-3, -2, 1) \][/tex]
[tex]\[ \overrightarrow{PQ} = Q - P \implies (2 - 0, 0 - 1, -4 - 1) = (2, -1, -5) \][/tex]
[tex]\[ \overrightarrow{PR} = R - P \implies (-3 - 0, -2 - 1, 1 - 1) = (-3, -3, 0) \][/tex]
2. Calculate the cross product [tex]\( \overrightarrow{PQ} \times \overrightarrow{PR} \)[/tex]:
The cross product can be found using the determinant of a matrix composed of the unit vectors and the components of [tex]\( \overrightarrow{PQ} \)[/tex] and [tex]\( \overrightarrow{PR} \)[/tex]:
[tex]\[ \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & -5 \\ -3 & -3 & 0 \end{vmatrix} \][/tex]
Expanding this determinant, we get:
[tex]\[ \overrightarrow{PQ} \times \overrightarrow{PR} = \mathbf{i}((-1)(0) - (-5)(-3)) - \mathbf{j}((2)(0) - (-5)(-3)) + \mathbf{k}((2)(-3) - (-1)(-3)) \][/tex]
[tex]\[ = \mathbf{i}(0 - 15) - \mathbf{j}(0 - 15) + \mathbf{k}(-6 - 3) \][/tex]
[tex]\[ = \mathbf{i}(-15) - \mathbf{j}(-15) + \mathbf{k}(-9) \][/tex]
[tex]\[ = -15\mathbf{i} + 15\mathbf{j} - 9\mathbf{k} \][/tex]
Thus, the cross product is:
[tex]\[ \overrightarrow{PQ} \times \overrightarrow{PR} = (-15, 15, -9) \][/tex]
3. Find the magnitude of the cross product [tex]\( \lVert \overrightarrow{PQ} \times \overrightarrow{PR} \rVert \)[/tex]:
The magnitude of a vector [tex]\((a, b, c)\)[/tex] is given by:
[tex]\[ \lVert (a, b, c) \rVert = \sqrt{a^2 + b^2 + c^2} \][/tex]
Applying this to our cross product vector:
[tex]\[ \lVert (-15, 15, -9) \rVert = \sqrt{(-15)^2 + 15^2 + (-9)^2} \][/tex]
[tex]\[ = \sqrt{225 + 225 + 81} \][/tex]
[tex]\[ = \sqrt{531} \][/tex]
4. Understand that the area of the parallelogram is given by the magnitude of the cross product:
Thus, the area of the parallelogram is:
[tex]\[ \sqrt{531} \][/tex]
After simplification, this becomes:
[tex]\[ \text{The area of the parallelogram is } 3\sqrt{59}. \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.