Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the area of the parallelogram with one vertex at [tex]\( P \)[/tex] and sides formed by the vectors [tex]\( \overrightarrow{PQ} \)[/tex] and [tex]\( \overrightarrow{PR} \)[/tex], we can follow these steps:
1. Find the vectors [tex]\( \overrightarrow{PQ} \)[/tex] and [tex]\( \overrightarrow{PR} \)[/tex]:
[tex]\[ P = (0, 1, 1), \quad Q = (2, 0, -4), \quad R = (-3, -2, 1) \][/tex]
[tex]\[ \overrightarrow{PQ} = Q - P \implies (2 - 0, 0 - 1, -4 - 1) = (2, -1, -5) \][/tex]
[tex]\[ \overrightarrow{PR} = R - P \implies (-3 - 0, -2 - 1, 1 - 1) = (-3, -3, 0) \][/tex]
2. Calculate the cross product [tex]\( \overrightarrow{PQ} \times \overrightarrow{PR} \)[/tex]:
The cross product can be found using the determinant of a matrix composed of the unit vectors and the components of [tex]\( \overrightarrow{PQ} \)[/tex] and [tex]\( \overrightarrow{PR} \)[/tex]:
[tex]\[ \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & -5 \\ -3 & -3 & 0 \end{vmatrix} \][/tex]
Expanding this determinant, we get:
[tex]\[ \overrightarrow{PQ} \times \overrightarrow{PR} = \mathbf{i}((-1)(0) - (-5)(-3)) - \mathbf{j}((2)(0) - (-5)(-3)) + \mathbf{k}((2)(-3) - (-1)(-3)) \][/tex]
[tex]\[ = \mathbf{i}(0 - 15) - \mathbf{j}(0 - 15) + \mathbf{k}(-6 - 3) \][/tex]
[tex]\[ = \mathbf{i}(-15) - \mathbf{j}(-15) + \mathbf{k}(-9) \][/tex]
[tex]\[ = -15\mathbf{i} + 15\mathbf{j} - 9\mathbf{k} \][/tex]
Thus, the cross product is:
[tex]\[ \overrightarrow{PQ} \times \overrightarrow{PR} = (-15, 15, -9) \][/tex]
3. Find the magnitude of the cross product [tex]\( \lVert \overrightarrow{PQ} \times \overrightarrow{PR} \rVert \)[/tex]:
The magnitude of a vector [tex]\((a, b, c)\)[/tex] is given by:
[tex]\[ \lVert (a, b, c) \rVert = \sqrt{a^2 + b^2 + c^2} \][/tex]
Applying this to our cross product vector:
[tex]\[ \lVert (-15, 15, -9) \rVert = \sqrt{(-15)^2 + 15^2 + (-9)^2} \][/tex]
[tex]\[ = \sqrt{225 + 225 + 81} \][/tex]
[tex]\[ = \sqrt{531} \][/tex]
4. Understand that the area of the parallelogram is given by the magnitude of the cross product:
Thus, the area of the parallelogram is:
[tex]\[ \sqrt{531} \][/tex]
After simplification, this becomes:
[tex]\[ \text{The area of the parallelogram is } 3\sqrt{59}. \][/tex]
1. Find the vectors [tex]\( \overrightarrow{PQ} \)[/tex] and [tex]\( \overrightarrow{PR} \)[/tex]:
[tex]\[ P = (0, 1, 1), \quad Q = (2, 0, -4), \quad R = (-3, -2, 1) \][/tex]
[tex]\[ \overrightarrow{PQ} = Q - P \implies (2 - 0, 0 - 1, -4 - 1) = (2, -1, -5) \][/tex]
[tex]\[ \overrightarrow{PR} = R - P \implies (-3 - 0, -2 - 1, 1 - 1) = (-3, -3, 0) \][/tex]
2. Calculate the cross product [tex]\( \overrightarrow{PQ} \times \overrightarrow{PR} \)[/tex]:
The cross product can be found using the determinant of a matrix composed of the unit vectors and the components of [tex]\( \overrightarrow{PQ} \)[/tex] and [tex]\( \overrightarrow{PR} \)[/tex]:
[tex]\[ \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & -5 \\ -3 & -3 & 0 \end{vmatrix} \][/tex]
Expanding this determinant, we get:
[tex]\[ \overrightarrow{PQ} \times \overrightarrow{PR} = \mathbf{i}((-1)(0) - (-5)(-3)) - \mathbf{j}((2)(0) - (-5)(-3)) + \mathbf{k}((2)(-3) - (-1)(-3)) \][/tex]
[tex]\[ = \mathbf{i}(0 - 15) - \mathbf{j}(0 - 15) + \mathbf{k}(-6 - 3) \][/tex]
[tex]\[ = \mathbf{i}(-15) - \mathbf{j}(-15) + \mathbf{k}(-9) \][/tex]
[tex]\[ = -15\mathbf{i} + 15\mathbf{j} - 9\mathbf{k} \][/tex]
Thus, the cross product is:
[tex]\[ \overrightarrow{PQ} \times \overrightarrow{PR} = (-15, 15, -9) \][/tex]
3. Find the magnitude of the cross product [tex]\( \lVert \overrightarrow{PQ} \times \overrightarrow{PR} \rVert \)[/tex]:
The magnitude of a vector [tex]\((a, b, c)\)[/tex] is given by:
[tex]\[ \lVert (a, b, c) \rVert = \sqrt{a^2 + b^2 + c^2} \][/tex]
Applying this to our cross product vector:
[tex]\[ \lVert (-15, 15, -9) \rVert = \sqrt{(-15)^2 + 15^2 + (-9)^2} \][/tex]
[tex]\[ = \sqrt{225 + 225 + 81} \][/tex]
[tex]\[ = \sqrt{531} \][/tex]
4. Understand that the area of the parallelogram is given by the magnitude of the cross product:
Thus, the area of the parallelogram is:
[tex]\[ \sqrt{531} \][/tex]
After simplification, this becomes:
[tex]\[ \text{The area of the parallelogram is } 3\sqrt{59}. \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.