Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which of the given options is a non-real complex number, let’s analyze each option one by one:
Option A: [tex]\( 5 \sqrt{\frac{1}{3}} - \frac{9}{\sqrt{7}} \)[/tex]
- [tex]\( 5 \sqrt{\frac{1}{3}} \)[/tex] involves the square root of a positive fraction, which is a real number.
- [tex]\( \frac{9}{\sqrt{7}} \)[/tex] is also a real number because both 9 and [tex]\( \sqrt{7} \)[/tex] are real numbers.
- Subtracting two real numbers will still yield a real number.
Therefore, option A represents a real number.
Option B: [tex]\( \frac{2 + 3 \sqrt{5}}{2} \)[/tex]
- Both 2 and [tex]\( 3 \sqrt{5} \)[/tex] are real numbers.
- Dividing a real number (or combination of real numbers) by another real number (in this case, 2) results in a real number.
Therefore, option B is also a real number.
Option C: [tex]\( \frac{8}{3} + \sqrt{-\frac{7}{3}} \)[/tex]
- [tex]\( \frac{8}{3} \)[/tex] is clearly a real number.
- [tex]\( \sqrt{-\frac{7}{3}} \)[/tex] involves the square root of a negative number, which by definition is not a real number but rather a complex number.
Thus, option C includes a non-real complex number.
Option D: [tex]\( 2 - \frac{1}{\sqrt{11}} \)[/tex]
- Both 2 and [tex]\( \frac{1}{\sqrt{11}} \)[/tex] are real numbers.
- Subtracting one real number from another will produce a real number.
Therefore, option D also represents a real number.
Conclusion:
The only option that contains a non-real complex number is option C. Hence, the correct answer is:
C. [tex]\( \frac{8}{3} + \sqrt{-\frac{7}{3}} \)[/tex]
Option A: [tex]\( 5 \sqrt{\frac{1}{3}} - \frac{9}{\sqrt{7}} \)[/tex]
- [tex]\( 5 \sqrt{\frac{1}{3}} \)[/tex] involves the square root of a positive fraction, which is a real number.
- [tex]\( \frac{9}{\sqrt{7}} \)[/tex] is also a real number because both 9 and [tex]\( \sqrt{7} \)[/tex] are real numbers.
- Subtracting two real numbers will still yield a real number.
Therefore, option A represents a real number.
Option B: [tex]\( \frac{2 + 3 \sqrt{5}}{2} \)[/tex]
- Both 2 and [tex]\( 3 \sqrt{5} \)[/tex] are real numbers.
- Dividing a real number (or combination of real numbers) by another real number (in this case, 2) results in a real number.
Therefore, option B is also a real number.
Option C: [tex]\( \frac{8}{3} + \sqrt{-\frac{7}{3}} \)[/tex]
- [tex]\( \frac{8}{3} \)[/tex] is clearly a real number.
- [tex]\( \sqrt{-\frac{7}{3}} \)[/tex] involves the square root of a negative number, which by definition is not a real number but rather a complex number.
Thus, option C includes a non-real complex number.
Option D: [tex]\( 2 - \frac{1}{\sqrt{11}} \)[/tex]
- Both 2 and [tex]\( \frac{1}{\sqrt{11}} \)[/tex] are real numbers.
- Subtracting one real number from another will produce a real number.
Therefore, option D also represents a real number.
Conclusion:
The only option that contains a non-real complex number is option C. Hence, the correct answer is:
C. [tex]\( \frac{8}{3} + \sqrt{-\frac{7}{3}} \)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.