Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which of the given options is a non-real complex number, let’s analyze each option one by one:
Option A: [tex]\( 5 \sqrt{\frac{1}{3}} - \frac{9}{\sqrt{7}} \)[/tex]
- [tex]\( 5 \sqrt{\frac{1}{3}} \)[/tex] involves the square root of a positive fraction, which is a real number.
- [tex]\( \frac{9}{\sqrt{7}} \)[/tex] is also a real number because both 9 and [tex]\( \sqrt{7} \)[/tex] are real numbers.
- Subtracting two real numbers will still yield a real number.
Therefore, option A represents a real number.
Option B: [tex]\( \frac{2 + 3 \sqrt{5}}{2} \)[/tex]
- Both 2 and [tex]\( 3 \sqrt{5} \)[/tex] are real numbers.
- Dividing a real number (or combination of real numbers) by another real number (in this case, 2) results in a real number.
Therefore, option B is also a real number.
Option C: [tex]\( \frac{8}{3} + \sqrt{-\frac{7}{3}} \)[/tex]
- [tex]\( \frac{8}{3} \)[/tex] is clearly a real number.
- [tex]\( \sqrt{-\frac{7}{3}} \)[/tex] involves the square root of a negative number, which by definition is not a real number but rather a complex number.
Thus, option C includes a non-real complex number.
Option D: [tex]\( 2 - \frac{1}{\sqrt{11}} \)[/tex]
- Both 2 and [tex]\( \frac{1}{\sqrt{11}} \)[/tex] are real numbers.
- Subtracting one real number from another will produce a real number.
Therefore, option D also represents a real number.
Conclusion:
The only option that contains a non-real complex number is option C. Hence, the correct answer is:
C. [tex]\( \frac{8}{3} + \sqrt{-\frac{7}{3}} \)[/tex]
Option A: [tex]\( 5 \sqrt{\frac{1}{3}} - \frac{9}{\sqrt{7}} \)[/tex]
- [tex]\( 5 \sqrt{\frac{1}{3}} \)[/tex] involves the square root of a positive fraction, which is a real number.
- [tex]\( \frac{9}{\sqrt{7}} \)[/tex] is also a real number because both 9 and [tex]\( \sqrt{7} \)[/tex] are real numbers.
- Subtracting two real numbers will still yield a real number.
Therefore, option A represents a real number.
Option B: [tex]\( \frac{2 + 3 \sqrt{5}}{2} \)[/tex]
- Both 2 and [tex]\( 3 \sqrt{5} \)[/tex] are real numbers.
- Dividing a real number (or combination of real numbers) by another real number (in this case, 2) results in a real number.
Therefore, option B is also a real number.
Option C: [tex]\( \frac{8}{3} + \sqrt{-\frac{7}{3}} \)[/tex]
- [tex]\( \frac{8}{3} \)[/tex] is clearly a real number.
- [tex]\( \sqrt{-\frac{7}{3}} \)[/tex] involves the square root of a negative number, which by definition is not a real number but rather a complex number.
Thus, option C includes a non-real complex number.
Option D: [tex]\( 2 - \frac{1}{\sqrt{11}} \)[/tex]
- Both 2 and [tex]\( \frac{1}{\sqrt{11}} \)[/tex] are real numbers.
- Subtracting one real number from another will produce a real number.
Therefore, option D also represents a real number.
Conclusion:
The only option that contains a non-real complex number is option C. Hence, the correct answer is:
C. [tex]\( \frac{8}{3} + \sqrt{-\frac{7}{3}} \)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.