Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

A circle has a central angle of 6 radians that intersects an arc of length 14 in. Which equation finds the length of the radius, [tex]r[/tex], of the circle?

A. [tex]r=\frac{6}{14}[/tex]
B. [tex]r=\frac{14}{6}[/tex]
C. [tex]r=8+14[/tex]
D. [tex]r=6 \cdot 14[/tex]


Sagot :

To solve the question of finding the radius [tex]\( r \)[/tex] of a circle when given a central angle and the length of the intercepted arc, we can use the relationship between the arc length, the central angle in radians, and the radius.

The formula to find the arc length [tex]\( L \)[/tex] of a circle is:
[tex]\[ L = r \theta \][/tex]
where:
- [tex]\( L \)[/tex] is the arc length,
- [tex]\( r \)[/tex] is the radius,
- [tex]\( \theta \)[/tex] is the central angle in radians.

Given in the problem:
- The central angle [tex]\( \theta \)[/tex] is 6 radians,
- The arc length [tex]\( L \)[/tex] is 14 inches.

We need to find [tex]\( r \)[/tex]. Rearranging the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{L}{\theta} \][/tex]

Substitute the given values into the equation:
[tex]\[ r = \frac{14}{6} \][/tex]

Calculating the right-hand side gives us:
[tex]\[ r = 2.3333333333333335 \][/tex]

Given the options:
- [tex]\( r = \frac{6}{14} \)[/tex]
- [tex]\( r = \frac{14}{6} \)[/tex]
- [tex]\( r = 8 + 14 \)[/tex]
- [tex]\( r = 6 \cdot 14 \)[/tex]

The correct equation that finds the length of the radius [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{14}{6} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.