Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the correct equation for acceleration, let's go through each option step by step:
### Option 1: [tex]\( t = \frac{\Delta v}{a} \)[/tex]
1. Start with the formula:
[tex]\[ t = \frac{\Delta v}{a} \][/tex]
2. Rearrange this equation to solve for [tex]\( a \)[/tex] (acceleration):
[tex]\[ a = \frac{\Delta v}{t} \][/tex]
### Option 2: [tex]\( v_f = a t - v \)[/tex]
1. Start with the formula:
[tex]\[ v_f = a t - v \][/tex]
2. Rearrange this equation to solve for [tex]\( a \)[/tex] (acceleration):
[tex]\[ v_f + v = a t \][/tex]
[tex]\[ a = \frac{v_f + v}{t} \][/tex]
### Option 3: [tex]\( a = \frac{d}{t} \)[/tex]
1. The formula is already solved for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{d}{t} \][/tex]
However, note that this formula relates distance ([tex]\( d \)[/tex]) and time ([tex]\( t \)[/tex]). Acceleration typically relates to the change in velocity over time, not purely distance over time.
### Option 4: [tex]\( \Delta v = \frac{a}{t} \)[/tex]
1. Start with the formula:
[tex]\[ \Delta v = \frac{a}{t} \][/tex]
2. Rearrange this equation to solve for [tex]\( a \)[/tex] (acceleration):
[tex]\[ a = \Delta v \times t \][/tex]
### Conclusion:
In classical mechanics, the correct and most commonly used equation for acceleration ([tex]\( a \)[/tex]) in terms of the change in velocity ([tex]\( \Delta v \)[/tex]) over time ([tex]\( t \)[/tex]) is:
[tex]\[ a = \frac{\Delta v}{t} \][/tex]
From the given options, the correct equation for acceleration is obtained by rearranging Option 1. Therefore, the correct option is:
[tex]\[ \boxed{1} \][/tex]
### Option 1: [tex]\( t = \frac{\Delta v}{a} \)[/tex]
1. Start with the formula:
[tex]\[ t = \frac{\Delta v}{a} \][/tex]
2. Rearrange this equation to solve for [tex]\( a \)[/tex] (acceleration):
[tex]\[ a = \frac{\Delta v}{t} \][/tex]
### Option 2: [tex]\( v_f = a t - v \)[/tex]
1. Start with the formula:
[tex]\[ v_f = a t - v \][/tex]
2. Rearrange this equation to solve for [tex]\( a \)[/tex] (acceleration):
[tex]\[ v_f + v = a t \][/tex]
[tex]\[ a = \frac{v_f + v}{t} \][/tex]
### Option 3: [tex]\( a = \frac{d}{t} \)[/tex]
1. The formula is already solved for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{d}{t} \][/tex]
However, note that this formula relates distance ([tex]\( d \)[/tex]) and time ([tex]\( t \)[/tex]). Acceleration typically relates to the change in velocity over time, not purely distance over time.
### Option 4: [tex]\( \Delta v = \frac{a}{t} \)[/tex]
1. Start with the formula:
[tex]\[ \Delta v = \frac{a}{t} \][/tex]
2. Rearrange this equation to solve for [tex]\( a \)[/tex] (acceleration):
[tex]\[ a = \Delta v \times t \][/tex]
### Conclusion:
In classical mechanics, the correct and most commonly used equation for acceleration ([tex]\( a \)[/tex]) in terms of the change in velocity ([tex]\( \Delta v \)[/tex]) over time ([tex]\( t \)[/tex]) is:
[tex]\[ a = \frac{\Delta v}{t} \][/tex]
From the given options, the correct equation for acceleration is obtained by rearranging Option 1. Therefore, the correct option is:
[tex]\[ \boxed{1} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.