Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the correct equation for acceleration, let's go through each option step by step:
### Option 1: [tex]\( t = \frac{\Delta v}{a} \)[/tex]
1. Start with the formula:
[tex]\[ t = \frac{\Delta v}{a} \][/tex]
2. Rearrange this equation to solve for [tex]\( a \)[/tex] (acceleration):
[tex]\[ a = \frac{\Delta v}{t} \][/tex]
### Option 2: [tex]\( v_f = a t - v \)[/tex]
1. Start with the formula:
[tex]\[ v_f = a t - v \][/tex]
2. Rearrange this equation to solve for [tex]\( a \)[/tex] (acceleration):
[tex]\[ v_f + v = a t \][/tex]
[tex]\[ a = \frac{v_f + v}{t} \][/tex]
### Option 3: [tex]\( a = \frac{d}{t} \)[/tex]
1. The formula is already solved for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{d}{t} \][/tex]
However, note that this formula relates distance ([tex]\( d \)[/tex]) and time ([tex]\( t \)[/tex]). Acceleration typically relates to the change in velocity over time, not purely distance over time.
### Option 4: [tex]\( \Delta v = \frac{a}{t} \)[/tex]
1. Start with the formula:
[tex]\[ \Delta v = \frac{a}{t} \][/tex]
2. Rearrange this equation to solve for [tex]\( a \)[/tex] (acceleration):
[tex]\[ a = \Delta v \times t \][/tex]
### Conclusion:
In classical mechanics, the correct and most commonly used equation for acceleration ([tex]\( a \)[/tex]) in terms of the change in velocity ([tex]\( \Delta v \)[/tex]) over time ([tex]\( t \)[/tex]) is:
[tex]\[ a = \frac{\Delta v}{t} \][/tex]
From the given options, the correct equation for acceleration is obtained by rearranging Option 1. Therefore, the correct option is:
[tex]\[ \boxed{1} \][/tex]
### Option 1: [tex]\( t = \frac{\Delta v}{a} \)[/tex]
1. Start with the formula:
[tex]\[ t = \frac{\Delta v}{a} \][/tex]
2. Rearrange this equation to solve for [tex]\( a \)[/tex] (acceleration):
[tex]\[ a = \frac{\Delta v}{t} \][/tex]
### Option 2: [tex]\( v_f = a t - v \)[/tex]
1. Start with the formula:
[tex]\[ v_f = a t - v \][/tex]
2. Rearrange this equation to solve for [tex]\( a \)[/tex] (acceleration):
[tex]\[ v_f + v = a t \][/tex]
[tex]\[ a = \frac{v_f + v}{t} \][/tex]
### Option 3: [tex]\( a = \frac{d}{t} \)[/tex]
1. The formula is already solved for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{d}{t} \][/tex]
However, note that this formula relates distance ([tex]\( d \)[/tex]) and time ([tex]\( t \)[/tex]). Acceleration typically relates to the change in velocity over time, not purely distance over time.
### Option 4: [tex]\( \Delta v = \frac{a}{t} \)[/tex]
1. Start with the formula:
[tex]\[ \Delta v = \frac{a}{t} \][/tex]
2. Rearrange this equation to solve for [tex]\( a \)[/tex] (acceleration):
[tex]\[ a = \Delta v \times t \][/tex]
### Conclusion:
In classical mechanics, the correct and most commonly used equation for acceleration ([tex]\( a \)[/tex]) in terms of the change in velocity ([tex]\( \Delta v \)[/tex]) over time ([tex]\( t \)[/tex]) is:
[tex]\[ a = \frac{\Delta v}{t} \][/tex]
From the given options, the correct equation for acceleration is obtained by rearranging Option 1. Therefore, the correct option is:
[tex]\[ \boxed{1} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.