Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the domain of the given radical function [tex]\(f(x) = \sqrt{x + 1} - 3\)[/tex], we need to ensure that the expression inside the square root is non-negative because the square root of a negative number is not defined in the set of real numbers.
The expression inside the square root is [tex]\(x + 1\)[/tex]. We need to solve for when this expression is non-negative:
[tex]\[ x + 1 \geq 0 \][/tex]
Subtract 1 from both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ x \geq -1 \][/tex]
Hence, the domain of the function [tex]\(f(x) = \sqrt{x + 1} - 3\)[/tex] includes all [tex]\(x\)[/tex] values that are greater than or equal to [tex]\(-1\)[/tex]. We can express this domain in interval notation as:
[tex]\[ [-1, \infty) \][/tex]
Therefore, the correct answer is:
[tex]\[ \text{D. } [-1, \infty) \][/tex]
The expression inside the square root is [tex]\(x + 1\)[/tex]. We need to solve for when this expression is non-negative:
[tex]\[ x + 1 \geq 0 \][/tex]
Subtract 1 from both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ x \geq -1 \][/tex]
Hence, the domain of the function [tex]\(f(x) = \sqrt{x + 1} - 3\)[/tex] includes all [tex]\(x\)[/tex] values that are greater than or equal to [tex]\(-1\)[/tex]. We can express this domain in interval notation as:
[tex]\[ [-1, \infty) \][/tex]
Therefore, the correct answer is:
[tex]\[ \text{D. } [-1, \infty) \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.