Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which equations can be used to solve for the value of [tex]\( z \)[/tex] using the Law of Sines, we need to evaluate each option through this formula:
[tex]\[ \frac{\sin (A)}{a} = \frac{\sin (B)}{b} = \frac{\sin (C)}{c} \][/tex]
Let's analyze the given options:
1. [tex]\( \frac{\operatorname{mose}}{2.5} = \frac{3.95}{2} \)[/tex]
- This equation does not involve sine values or angles, and thus it does not follow the Law of Sines. Therefore, it cannot be used to solve for [tex]\( z \)[/tex].
2. [tex]\( \frac{\sin \left(51^{\circ}\right)}{2.5} = \frac{\sin \left(53^{\circ}\right)}{z} \)[/tex]
- This option matches the form required by the Law of Sines as it involves the sine of angles and the corresponding opposite sides. Thus, it can be used to solve for [tex]\( z \)[/tex].
3. [tex]\( \frac{\sin \left(76^{\circ}\right)}{2.5} = \frac{\sin \left(51^{\circ}\right)}{2} \)[/tex]
- This equation does not include [tex]\( z \)[/tex], so it cannot be used to solve for [tex]\( z \)[/tex].
4. [tex]\( \frac{\sin \left(75^{\circ}\right)}{2.6} = \frac{\sin \left(53^{\circ}\right)}{z} \)[/tex]
- This option also matches the form required by the Law of Sines as it involves the sine of angles and the corresponding opposite sides. Hence, it can be used to solve for [tex]\( z \)[/tex].
Therefore, the correct equations that can be used to solve for the value of [tex]\( z \)[/tex] are:
[tex]\[ \boxed{2 \text{ and } 4} \][/tex]
[tex]\[ \frac{\sin (A)}{a} = \frac{\sin (B)}{b} = \frac{\sin (C)}{c} \][/tex]
Let's analyze the given options:
1. [tex]\( \frac{\operatorname{mose}}{2.5} = \frac{3.95}{2} \)[/tex]
- This equation does not involve sine values or angles, and thus it does not follow the Law of Sines. Therefore, it cannot be used to solve for [tex]\( z \)[/tex].
2. [tex]\( \frac{\sin \left(51^{\circ}\right)}{2.5} = \frac{\sin \left(53^{\circ}\right)}{z} \)[/tex]
- This option matches the form required by the Law of Sines as it involves the sine of angles and the corresponding opposite sides. Thus, it can be used to solve for [tex]\( z \)[/tex].
3. [tex]\( \frac{\sin \left(76^{\circ}\right)}{2.5} = \frac{\sin \left(51^{\circ}\right)}{2} \)[/tex]
- This equation does not include [tex]\( z \)[/tex], so it cannot be used to solve for [tex]\( z \)[/tex].
4. [tex]\( \frac{\sin \left(75^{\circ}\right)}{2.6} = \frac{\sin \left(53^{\circ}\right)}{z} \)[/tex]
- This option also matches the form required by the Law of Sines as it involves the sine of angles and the corresponding opposite sides. Hence, it can be used to solve for [tex]\( z \)[/tex].
Therefore, the correct equations that can be used to solve for the value of [tex]\( z \)[/tex] are:
[tex]\[ \boxed{2 \text{ and } 4} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.