Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which equations can be used to solve for the value of [tex]\( z \)[/tex] using the Law of Sines, we need to evaluate each option through this formula:
[tex]\[ \frac{\sin (A)}{a} = \frac{\sin (B)}{b} = \frac{\sin (C)}{c} \][/tex]
Let's analyze the given options:
1. [tex]\( \frac{\operatorname{mose}}{2.5} = \frac{3.95}{2} \)[/tex]
- This equation does not involve sine values or angles, and thus it does not follow the Law of Sines. Therefore, it cannot be used to solve for [tex]\( z \)[/tex].
2. [tex]\( \frac{\sin \left(51^{\circ}\right)}{2.5} = \frac{\sin \left(53^{\circ}\right)}{z} \)[/tex]
- This option matches the form required by the Law of Sines as it involves the sine of angles and the corresponding opposite sides. Thus, it can be used to solve for [tex]\( z \)[/tex].
3. [tex]\( \frac{\sin \left(76^{\circ}\right)}{2.5} = \frac{\sin \left(51^{\circ}\right)}{2} \)[/tex]
- This equation does not include [tex]\( z \)[/tex], so it cannot be used to solve for [tex]\( z \)[/tex].
4. [tex]\( \frac{\sin \left(75^{\circ}\right)}{2.6} = \frac{\sin \left(53^{\circ}\right)}{z} \)[/tex]
- This option also matches the form required by the Law of Sines as it involves the sine of angles and the corresponding opposite sides. Hence, it can be used to solve for [tex]\( z \)[/tex].
Therefore, the correct equations that can be used to solve for the value of [tex]\( z \)[/tex] are:
[tex]\[ \boxed{2 \text{ and } 4} \][/tex]
[tex]\[ \frac{\sin (A)}{a} = \frac{\sin (B)}{b} = \frac{\sin (C)}{c} \][/tex]
Let's analyze the given options:
1. [tex]\( \frac{\operatorname{mose}}{2.5} = \frac{3.95}{2} \)[/tex]
- This equation does not involve sine values or angles, and thus it does not follow the Law of Sines. Therefore, it cannot be used to solve for [tex]\( z \)[/tex].
2. [tex]\( \frac{\sin \left(51^{\circ}\right)}{2.5} = \frac{\sin \left(53^{\circ}\right)}{z} \)[/tex]
- This option matches the form required by the Law of Sines as it involves the sine of angles and the corresponding opposite sides. Thus, it can be used to solve for [tex]\( z \)[/tex].
3. [tex]\( \frac{\sin \left(76^{\circ}\right)}{2.5} = \frac{\sin \left(51^{\circ}\right)}{2} \)[/tex]
- This equation does not include [tex]\( z \)[/tex], so it cannot be used to solve for [tex]\( z \)[/tex].
4. [tex]\( \frac{\sin \left(75^{\circ}\right)}{2.6} = \frac{\sin \left(53^{\circ}\right)}{z} \)[/tex]
- This option also matches the form required by the Law of Sines as it involves the sine of angles and the corresponding opposite sides. Hence, it can be used to solve for [tex]\( z \)[/tex].
Therefore, the correct equations that can be used to solve for the value of [tex]\( z \)[/tex] are:
[tex]\[ \boxed{2 \text{ and } 4} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.