Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's solve the problem discussing each step carefully.
1. Understanding the problem:
- We have a radioactive substance, cesium-137, with a half-life of 30 years.
- The amount of the substance left after a certain period can be calculated using the exponential decay formula:
[tex]\[ A(t) = 458 \left(\frac{1}{2}\right)^{\frac{t}{30}} \][/tex]
- We need to find two things:
1. Initial amount in the sample (at t = 0 years).
2. The amount remaining after 80 years.
2. Finding the Initial Amount:
- The initial amount of cesium-137 is represented by [tex]\( A(0) \)[/tex]. Substitute [tex]\( t = 0 \)[/tex] into the equation:
[tex]\[ A(0) = 458 \left(\frac{1}{2}\right)^{\frac{0}{30}} = 458 \left(\frac{1}{2}\right)^0 \][/tex]
- Any number raised to the power of 0 is 1:
[tex]\[ A(0) = 458 \times 1 = 458 \text{ grams} \][/tex]
- Therefore, the initial amount of cesium-137 in the sample is 458 grams.
3. Finding the Amount After 80 Years:
- To find the amount of cesium-137 remaining after 80 years, we need to evaluate [tex]\( A(80) \)[/tex]. Substitute [tex]\( t = 80 \)[/tex] into the equation:
[tex]\[ A(80) = 458 \left(\frac{1}{2}\right)^{\frac{80}{30}} \][/tex]
- First, calculate the exponent:
[tex]\[ \frac{80}{30} \approx 2.6667 \][/tex]
- Then, compute the powers of 0.5:
[tex]\[ A(80) = 458 \left(\frac{1}{2}\right)^{2.6667} \][/tex]
- Taking the power of [tex]\(\left(\frac{1}{2}\right)^{2.6667}\)[/tex] gives us a value which, when multiplied by 458 grams, gives an approximate value:
[tex]\[ A(80) \approx 72 \text{ grams} \][/tex]
- Therefore, the amount of cesium-137 remaining after 80 years is approximately 72 grams.
The results are:
- Initial amount: 458 grams
- Amount after 80 years: 72 grams
These values are rounded to the nearest gram as requested.
1. Understanding the problem:
- We have a radioactive substance, cesium-137, with a half-life of 30 years.
- The amount of the substance left after a certain period can be calculated using the exponential decay formula:
[tex]\[ A(t) = 458 \left(\frac{1}{2}\right)^{\frac{t}{30}} \][/tex]
- We need to find two things:
1. Initial amount in the sample (at t = 0 years).
2. The amount remaining after 80 years.
2. Finding the Initial Amount:
- The initial amount of cesium-137 is represented by [tex]\( A(0) \)[/tex]. Substitute [tex]\( t = 0 \)[/tex] into the equation:
[tex]\[ A(0) = 458 \left(\frac{1}{2}\right)^{\frac{0}{30}} = 458 \left(\frac{1}{2}\right)^0 \][/tex]
- Any number raised to the power of 0 is 1:
[tex]\[ A(0) = 458 \times 1 = 458 \text{ grams} \][/tex]
- Therefore, the initial amount of cesium-137 in the sample is 458 grams.
3. Finding the Amount After 80 Years:
- To find the amount of cesium-137 remaining after 80 years, we need to evaluate [tex]\( A(80) \)[/tex]. Substitute [tex]\( t = 80 \)[/tex] into the equation:
[tex]\[ A(80) = 458 \left(\frac{1}{2}\right)^{\frac{80}{30}} \][/tex]
- First, calculate the exponent:
[tex]\[ \frac{80}{30} \approx 2.6667 \][/tex]
- Then, compute the powers of 0.5:
[tex]\[ A(80) = 458 \left(\frac{1}{2}\right)^{2.6667} \][/tex]
- Taking the power of [tex]\(\left(\frac{1}{2}\right)^{2.6667}\)[/tex] gives us a value which, when multiplied by 458 grams, gives an approximate value:
[tex]\[ A(80) \approx 72 \text{ grams} \][/tex]
- Therefore, the amount of cesium-137 remaining after 80 years is approximately 72 grams.
The results are:
- Initial amount: 458 grams
- Amount after 80 years: 72 grams
These values are rounded to the nearest gram as requested.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.