Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
(a)
[tex]\texttt{the exponential form}:\bf 4^n=16384\\\texttt{the solution}:\bf n=7[/tex]
(b)
[tex]\texttt{the exponential form}:\bf b^6=46656\\\texttt{the solution}:\bf b=6[/tex]
Step-by-step explanation:
To find the exponential form for [tex]n=log_4(16384)[/tex] and [tex]6=log_b(46656)[/tex], we apply this principle:
[tex]\boxed{log_a(b)=c\ \Longleftrightarrow\ a^c=b}[/tex]
where:
- [tex]a=\texttt{base}[/tex]
- [tex]b=\texttt{argument}[/tex]
- [tex]c=\texttt{exponent}[/tex]
(a)
[tex]n=log_4(16384)[/tex]
given:
- [tex]\texttt{base (a)}=4[/tex]
- [tex]\texttt{argument (b)}=16384[/tex]
- [tex]\texttt{exponent (c)}=n[/tex]
Now we can find its exponential form:
[tex]a^c=b[/tex]
[tex]\bf 4^n=16384[/tex]
Next, we can find the solution:
[tex]4^n=16384[/tex]
[tex]4^n=4^7[/tex]
[tex]\bf n=7[/tex]
(b)
[tex]6=log_b(46656)[/tex]
given:
- [tex]\texttt{base (a)}=b[/tex]
- [tex]\texttt{argument (b)}=46656[/tex]
- [tex]\texttt{exponent (c)}=6[/tex]
Now we can find its exponential form:
[tex]a^c=b[/tex]
[tex]\bf b^6=46656[/tex]
Next, we can find the solution:
[tex]b^6=46656[/tex]
[tex]b^6=6^6[/tex]
[tex]\bf b=6[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.