At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine why [tex]\(\cos \frac{2 \pi}{3} \neq \cos \frac{5 \pi}{3}\)[/tex], let's analyze the given angles and their respective cosine values step-by-step.
1. Convert the Angles to Decimal Degrees:
- [tex]\(\frac{2 \pi}{3}\)[/tex] radians is equivalent to [tex]\(120^\circ\)[/tex].
- [tex]\(\frac{5 \pi}{3}\)[/tex] radians is equivalent to [tex]\(300^\circ\)[/tex].
2. Determine the Quadrants:
- An angle of [tex]\(120^\circ\)[/tex] (or [tex]\(\frac{2 \pi}{3}\)[/tex]) is located in the second quadrant.
- An angle of [tex]\(300^\circ\)[/tex] (or [tex]\(\frac{5 \pi}{3}\)[/tex]) is located in the fourth quadrant.
3. Characteristics of Cosine in Different Quadrants:
- In the second quadrant, the cosine of an angle is negative.
- In the fourth quadrant, the cosine of an angle is positive.
4. Calculate or Use Known Values of Cosines:
- [tex]\(\cos \frac{2\pi}{3} \approx -0.5\)[/tex].
- [tex]\(\cos \frac{5\pi}{3} \approx 0.5\)[/tex].
5. Compare the Cosine Values:
- These values confirm that [tex]\(\cos \frac{2\pi}{3}\)[/tex] is negative and [tex]\(\cos \frac{5\pi}{3}\)[/tex] is positive.
Now, given the information and the properties of cosine in various quadrants:
- The correct explanation is: Cosine is negative in the second quadrant and positive in the fourth quadrant.
The specific cosine values are:
- [tex]\(\cos \frac{2 \pi}{3} \approx -0.5\)[/tex].
- [tex]\(\cos \frac{5 \pi}{3} \approx 0.5\)[/tex].
Thus, through the characteristics of the cosine function in different quadrants, we see that [tex]\(\cos \frac{2 \pi}{3} \neq \cos \frac{5 \pi}{3}\)[/tex] because cosine takes different signs in the second and fourth quadrants.
1. Convert the Angles to Decimal Degrees:
- [tex]\(\frac{2 \pi}{3}\)[/tex] radians is equivalent to [tex]\(120^\circ\)[/tex].
- [tex]\(\frac{5 \pi}{3}\)[/tex] radians is equivalent to [tex]\(300^\circ\)[/tex].
2. Determine the Quadrants:
- An angle of [tex]\(120^\circ\)[/tex] (or [tex]\(\frac{2 \pi}{3}\)[/tex]) is located in the second quadrant.
- An angle of [tex]\(300^\circ\)[/tex] (or [tex]\(\frac{5 \pi}{3}\)[/tex]) is located in the fourth quadrant.
3. Characteristics of Cosine in Different Quadrants:
- In the second quadrant, the cosine of an angle is negative.
- In the fourth quadrant, the cosine of an angle is positive.
4. Calculate or Use Known Values of Cosines:
- [tex]\(\cos \frac{2\pi}{3} \approx -0.5\)[/tex].
- [tex]\(\cos \frac{5\pi}{3} \approx 0.5\)[/tex].
5. Compare the Cosine Values:
- These values confirm that [tex]\(\cos \frac{2\pi}{3}\)[/tex] is negative and [tex]\(\cos \frac{5\pi}{3}\)[/tex] is positive.
Now, given the information and the properties of cosine in various quadrants:
- The correct explanation is: Cosine is negative in the second quadrant and positive in the fourth quadrant.
The specific cosine values are:
- [tex]\(\cos \frac{2 \pi}{3} \approx -0.5\)[/tex].
- [tex]\(\cos \frac{5 \pi}{3} \approx 0.5\)[/tex].
Thus, through the characteristics of the cosine function in different quadrants, we see that [tex]\(\cos \frac{2 \pi}{3} \neq \cos \frac{5 \pi}{3}\)[/tex] because cosine takes different signs in the second and fourth quadrants.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.