Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To calculate the magnitude of the electrical force acting between two charges, we use Coulomb's Law. Coulomb's Law states that the magnitude of the force [tex]\( F \)[/tex] between two point charges is given by the formula:
[tex]\[ F = k \cdot \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
where:
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( 8.9875517873681764 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges,
- [tex]\( r \)[/tex] is the distance between the charges.
Given:
- [tex]\( q_1 = 2.4 \times 10^{-8} \, \text{C} \)[/tex]
- [tex]\( q_2 = 1.8 \times 10^{-6} \, \text{C} \)[/tex]
- [tex]\( r = 0.008 \, \text{m} \)[/tex]
Step-by-step solution:
1. Calculate the product of the charges:
[tex]\[ |q_1 \times q_2| = (2.4 \times 10^{-8} \, \text{C}) \times (1.8 \times 10^{-6} \, \text{C}) \][/tex]
[tex]\[ = 4.32 \times 10^{-14} \, \text{C}^2 \][/tex]
2. Square the distance:
[tex]\[ r^2 = (0.008 \, \text{m})^2 \][/tex]
[tex]\[ = 6.4 \times 10^{-5} \, \text{m}^2 \][/tex]
3. Apply Coulomb's Law formula:
[tex]\[ F = \frac{8.9875517873681764 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \times 4.32 \times 10^{-14} \, \text{C}^2}{6.4 \times 10^{-5} \, \text{m}^2} \][/tex]
[tex]\[ = 6.0665974564735174 \, \text{N} \][/tex]
4. Round the result to the tenths place:
[tex]\[ F \approx 6.1 \, \text{N} \][/tex]
Therefore, the magnitude of the electrical force acting between the charges is [tex]\( 6.1 \, \text{N} \)[/tex], rounded to the tenths place.
[tex]\[ F = k \cdot \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
where:
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( 8.9875517873681764 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges,
- [tex]\( r \)[/tex] is the distance between the charges.
Given:
- [tex]\( q_1 = 2.4 \times 10^{-8} \, \text{C} \)[/tex]
- [tex]\( q_2 = 1.8 \times 10^{-6} \, \text{C} \)[/tex]
- [tex]\( r = 0.008 \, \text{m} \)[/tex]
Step-by-step solution:
1. Calculate the product of the charges:
[tex]\[ |q_1 \times q_2| = (2.4 \times 10^{-8} \, \text{C}) \times (1.8 \times 10^{-6} \, \text{C}) \][/tex]
[tex]\[ = 4.32 \times 10^{-14} \, \text{C}^2 \][/tex]
2. Square the distance:
[tex]\[ r^2 = (0.008 \, \text{m})^2 \][/tex]
[tex]\[ = 6.4 \times 10^{-5} \, \text{m}^2 \][/tex]
3. Apply Coulomb's Law formula:
[tex]\[ F = \frac{8.9875517873681764 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \times 4.32 \times 10^{-14} \, \text{C}^2}{6.4 \times 10^{-5} \, \text{m}^2} \][/tex]
[tex]\[ = 6.0665974564735174 \, \text{N} \][/tex]
4. Round the result to the tenths place:
[tex]\[ F \approx 6.1 \, \text{N} \][/tex]
Therefore, the magnitude of the electrical force acting between the charges is [tex]\( 6.1 \, \text{N} \)[/tex], rounded to the tenths place.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.