Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the approximate [tex]\(95\%\)[/tex] confidence interval for the mean number of ounces of ketchup per bottle in the sample, we need to follow these steps:
1. Identify the given parameters:
- Population mean ([tex]\(\mu\)[/tex]) = 24 ounces
- Population standard deviation ([tex]\(\sigma\)[/tex]) = 0.2 ounces
- Sample size ([tex]\(n\)[/tex]) = 49
2. Calculate the standard error (SE):
The standard error is calculated using the formula:
[tex]\[ SE = \frac{\sigma}{\sqrt{n}} \][/tex]
Plugging in the values:
[tex]\[ SE = \frac{0.2}{\sqrt{49}} = \frac{0.2}{7} = 0.028571428571428574 \][/tex]
3. Find the Z-score for a 95% confidence interval:
For a 95% confidence interval, the Z-score (critical value) is approximately 1.96 (to be more precise, it's 1.959963984540054).
4. Calculate the margin of error (ME):
The margin of error is calculated using the formula:
[tex]\[ ME = Z \times SE \][/tex]
Plugging in the values:
[tex]\[ ME = 1.959963984540054 \times 0.028571428571428574 = 0.055998970986858694 \][/tex]
5. Determine the confidence interval:
The confidence interval is calculated using the formula:
[tex]\[ \text{Confidence Interval} = \left( \mu - ME, \mu + ME \right) \][/tex]
Plugging in the values:
[tex]\[ \text{Confidence Interval} = \left( 24 - 0.055998970986858694, 24 + 0.055998970986858694 \right) \][/tex]
[tex]\[ \text{Confidence Interval} = \left( 23.94400102901314, 24.05599897098686 \right) \][/tex]
6. Match our results to the provided options:
Comparing the margin of error (ME) with the provided options, we see that our calculated ME is approximately [tex]\(0.057\)[/tex]. Therefore, the correct answer from the given options is:
[tex]\(D. 24 \pm 0.057\)[/tex]
1. Identify the given parameters:
- Population mean ([tex]\(\mu\)[/tex]) = 24 ounces
- Population standard deviation ([tex]\(\sigma\)[/tex]) = 0.2 ounces
- Sample size ([tex]\(n\)[/tex]) = 49
2. Calculate the standard error (SE):
The standard error is calculated using the formula:
[tex]\[ SE = \frac{\sigma}{\sqrt{n}} \][/tex]
Plugging in the values:
[tex]\[ SE = \frac{0.2}{\sqrt{49}} = \frac{0.2}{7} = 0.028571428571428574 \][/tex]
3. Find the Z-score for a 95% confidence interval:
For a 95% confidence interval, the Z-score (critical value) is approximately 1.96 (to be more precise, it's 1.959963984540054).
4. Calculate the margin of error (ME):
The margin of error is calculated using the formula:
[tex]\[ ME = Z \times SE \][/tex]
Plugging in the values:
[tex]\[ ME = 1.959963984540054 \times 0.028571428571428574 = 0.055998970986858694 \][/tex]
5. Determine the confidence interval:
The confidence interval is calculated using the formula:
[tex]\[ \text{Confidence Interval} = \left( \mu - ME, \mu + ME \right) \][/tex]
Plugging in the values:
[tex]\[ \text{Confidence Interval} = \left( 24 - 0.055998970986858694, 24 + 0.055998970986858694 \right) \][/tex]
[tex]\[ \text{Confidence Interval} = \left( 23.94400102901314, 24.05599897098686 \right) \][/tex]
6. Match our results to the provided options:
Comparing the margin of error (ME) with the provided options, we see that our calculated ME is approximately [tex]\(0.057\)[/tex]. Therefore, the correct answer from the given options is:
[tex]\(D. 24 \pm 0.057\)[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.