Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Write the sum as a product:
[tex]\[ \sin(15.4y) - \sin(11.6y) = \][/tex]


Sagot :

To express the difference of sines [tex]\(\sin(15.4y) - \sin(11.6y)\)[/tex] as a product, we use the sum-to-product identities.

The specific identity we use is:
[tex]\[ \sin(A) - \sin(B) = 2 \cos\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right) \][/tex]

Substitute [tex]\(A = 15.4y\)[/tex] and [tex]\(B = 11.6y\)[/tex]:

1. Calculate the average of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ \frac{A + B}{2} = \frac{15.4y + 11.6y}{2} = \frac{27y}{2} = 13.5y \][/tex]

2. Calculate the half-difference of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ \frac{A - B}{2} = \frac{15.4y - 11.6y}{2} = \frac{3.8y}{2} = 1.9y \][/tex]

Now, substitute these values into the identity:
[tex]\[ \sin(15.4y) - \sin(11.6y) = 2 \cos\left(\frac{15.4y + 11.6y}{2}\right) \sin\left(\frac{15.4y - 11.6y}{2}\right) \][/tex]
[tex]\[ = 2 \cos(13.5y) \sin(1.9y) \][/tex]

Therefore, the expression [tex]\(\sin(15.4y) - \sin(11.6y)\)[/tex] as a product is:
[tex]\[ 2 \cos(13.5y) \sin(1.9y) \][/tex]