Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the reference angle for an angle measuring [tex]\(150^\circ\)[/tex], you need to understand that the reference angle is the smallest angle that the given angle makes with the x-axis.
When dealing with angles greater than [tex]\(90^\circ\)[/tex] and less than [tex]\(180^\circ\)[/tex], the angle lies in the second quadrant. In the second quadrant, the reference angle is found by taking the difference between [tex]\(180^\circ\)[/tex] and the given angle since [tex]\(180^\circ\)[/tex] is the straight line that separates the first two quadrants.
Given the angle [tex]\(150^\circ\)[/tex]:
1. Identify that the angle is in the second quadrant since it is greater than [tex]\(90^\circ\)[/tex] but less than [tex]\(180^\circ\)[/tex].
2. The formula to find the reference angle for angles in the second quadrant is [tex]\(180^\circ - x\)[/tex], where [tex]\(x\)[/tex] is the given angle.
Substitute the given angle, [tex]\(150^\circ\)[/tex]:
[tex]\[ 180^\circ - 150^\circ \][/tex]
Calculate the difference:
[tex]\[ 180^\circ - 150^\circ = 30^\circ \][/tex]
Therefore, the reference angle for an angle measuring [tex]\(150^\circ\)[/tex] is [tex]\(30^\circ\)[/tex], and the correct expression to determine the reference angle is:
[tex]\[ 180^\circ - x \][/tex]
When dealing with angles greater than [tex]\(90^\circ\)[/tex] and less than [tex]\(180^\circ\)[/tex], the angle lies in the second quadrant. In the second quadrant, the reference angle is found by taking the difference between [tex]\(180^\circ\)[/tex] and the given angle since [tex]\(180^\circ\)[/tex] is the straight line that separates the first two quadrants.
Given the angle [tex]\(150^\circ\)[/tex]:
1. Identify that the angle is in the second quadrant since it is greater than [tex]\(90^\circ\)[/tex] but less than [tex]\(180^\circ\)[/tex].
2. The formula to find the reference angle for angles in the second quadrant is [tex]\(180^\circ - x\)[/tex], where [tex]\(x\)[/tex] is the given angle.
Substitute the given angle, [tex]\(150^\circ\)[/tex]:
[tex]\[ 180^\circ - 150^\circ \][/tex]
Calculate the difference:
[tex]\[ 180^\circ - 150^\circ = 30^\circ \][/tex]
Therefore, the reference angle for an angle measuring [tex]\(150^\circ\)[/tex] is [tex]\(30^\circ\)[/tex], and the correct expression to determine the reference angle is:
[tex]\[ 180^\circ - x \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.