At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Vector [tex]$A$[/tex] points north and vector [tex]$B$[/tex] points east. If we subtract [tex][tex]$A$[/tex][/tex] from [tex]$B$[/tex], what is the direction of the vector [tex]$B - A$[/tex]?

A. north of east
B. south of east
C. north of west
D. south of west
E. none of the above


Sagot :

To determine the direction of the vector resulting from subtracting [tex]\( A \)[/tex] (which points north) from [tex]\( B \)[/tex] (which points east), we need to consider their components in a 2D coordinate plane.

1. Representing the vectors:
- Vector [tex]\( A \)[/tex] (north) can be represented as [tex]\( (0, 1) \)[/tex]. This is because north corresponds to a movement in the positive y-direction.
- Vector [tex]\( B \)[/tex] (east) can be represented as [tex]\( (1, 0) \)[/tex]. This is because east corresponds to a movement in the positive x-direction.

2. Subtracting the vectors:
- To find [tex]\( \mathbf{B} - \mathbf{A} \)[/tex], we subtract the components of [tex]\( \mathbf{A} \)[/tex] from the components of [tex]\( \mathbf{B} \)[/tex]:
[tex]\[ (1, 0) - (0, 1) = (1 - 0, 0 - 1) = (1, -1) \][/tex]

3. Interpreting the result:
- The vector [tex]\( (1, -1) \)[/tex] shows a movement of 1 unit in the positive x-direction (east) and 1 unit in the negative y-direction (south). When we combine these two components, the resulting vector points diagonally in the direction that is south of east.

Thus, after performing the subtraction and analyzing the resulting vector, we find that the direction of the vector [tex]\( \mathbf{B} - \mathbf{A} \)[/tex] is south of east.

The correct answer is b. south of east.