Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's simplify the given expression:
[tex]\[ \frac{\left(3 x^2 y^3\right)^6}{9 x y^2} \][/tex]
First, we’ll simplify the numerator by raising the entire term [tex]\((3 x^2 y^3)\)[/tex] to the power of 6.
### Step 1: Simplify the numerator
We need to apply the exponent of 6 to each component inside the parentheses:
[tex]\[ (3 x^2 y^3)^6 = 3^6 \cdot (x^2)^6 \cdot (y^3)^6 \][/tex]
Calculating each term individually:
[tex]\[ 3^6 = 729 \][/tex]
[tex]\[ (x^2)^6 = x^{2 \cdot 6} = x^{12} \][/tex]
[tex]\[ (y^3)^6 = y^{3 \cdot 6} = y^{18} \][/tex]
Combining these results, the simplified numerator is:
[tex]\[ 729 x^{12} y^{18} \][/tex]
### Step 2: Simplify the denominator
Now we simplify the denominator:
[tex]\[ 9 x y^2 \][/tex]
### Step 3: Divide the numerator by the denominator
We substitute the simplified forms of the numerator and denominator into the original expression:
[tex]\[ \frac{729 x^{12} y^{18}}{9 x y^2} \][/tex]
We can simplify this fraction by dividing the coefficients and subtracting the exponents of like bases:
[tex]\[ \frac{729 x^{12} y^{18}}{9 x y^2} = \frac{729}{9} \cdot \frac{x^{12}}{x^1} \cdot \frac{y^{18}}{y^2} \][/tex]
Perform the division for each part:
[tex]\[ \frac{729}{9} = 81 \][/tex]
[tex]\[ \frac{x^{12}}{x^1} = x^{12-1} = x^{11} \][/tex]
[tex]\[ \frac{y^{18}}{y^2} = y^{18-2} = y^{16} \][/tex]
Putting all these together, we get:
[tex]\[ 81 x^{11} y^{16} \][/tex]
So the simplified expression is:
[tex]\[ 81 x^{11} y^{16} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{81 x^{11} y^{16}} \][/tex]
[tex]\[ \frac{\left(3 x^2 y^3\right)^6}{9 x y^2} \][/tex]
First, we’ll simplify the numerator by raising the entire term [tex]\((3 x^2 y^3)\)[/tex] to the power of 6.
### Step 1: Simplify the numerator
We need to apply the exponent of 6 to each component inside the parentheses:
[tex]\[ (3 x^2 y^3)^6 = 3^6 \cdot (x^2)^6 \cdot (y^3)^6 \][/tex]
Calculating each term individually:
[tex]\[ 3^6 = 729 \][/tex]
[tex]\[ (x^2)^6 = x^{2 \cdot 6} = x^{12} \][/tex]
[tex]\[ (y^3)^6 = y^{3 \cdot 6} = y^{18} \][/tex]
Combining these results, the simplified numerator is:
[tex]\[ 729 x^{12} y^{18} \][/tex]
### Step 2: Simplify the denominator
Now we simplify the denominator:
[tex]\[ 9 x y^2 \][/tex]
### Step 3: Divide the numerator by the denominator
We substitute the simplified forms of the numerator and denominator into the original expression:
[tex]\[ \frac{729 x^{12} y^{18}}{9 x y^2} \][/tex]
We can simplify this fraction by dividing the coefficients and subtracting the exponents of like bases:
[tex]\[ \frac{729 x^{12} y^{18}}{9 x y^2} = \frac{729}{9} \cdot \frac{x^{12}}{x^1} \cdot \frac{y^{18}}{y^2} \][/tex]
Perform the division for each part:
[tex]\[ \frac{729}{9} = 81 \][/tex]
[tex]\[ \frac{x^{12}}{x^1} = x^{12-1} = x^{11} \][/tex]
[tex]\[ \frac{y^{18}}{y^2} = y^{18-2} = y^{16} \][/tex]
Putting all these together, we get:
[tex]\[ 81 x^{11} y^{16} \][/tex]
So the simplified expression is:
[tex]\[ 81 x^{11} y^{16} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{81 x^{11} y^{16}} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.