Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Write the sum as a product:

[tex]\[
\cos(14.9b) - \cos(10.3b) =
\][/tex]

Sagot :

To express the difference of cosines as a product, we utilize the trigonometric identity for the difference of cosines:
[tex]\[ \cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \][/tex]
Here, let [tex]\( A = 14.9b \)[/tex] and [tex]\( B = 10.3b \)[/tex].

First, calculate [tex]\( A + B \)[/tex] and [tex]\( A - B \)[/tex]:

[tex]\[ A + B = 14.9b + 10.3b = 25.2b \][/tex]

[tex]\[ A - B = 14.9b - 10.3b = 4.6b \][/tex]

Now, apply these results to the formula:

[tex]\[ \cos(14.9b) - \cos(10.3b) = -2 \sin\left(\frac{25.2b}{2}\right) \sin\left(\frac{4.6b}{2}\right) \][/tex]

Simplify the arguments of the sine functions:

[tex]\[ \frac{25.2b}{2} = 12.6b \][/tex]

[tex]\[ \frac{4.6b}{2} = 2.3b \][/tex]

Thus, the expression becomes:

[tex]\[ \cos(14.9b) - \cos(10.3b) = -2 \sin(12.6b) \sin(2.3b) \][/tex]

Therefore, the difference of the cosines can be written as:

[tex]\[ \cos(14.9b) - \cos(10.3b) = -2 \sin(12.6b) \sin(2.3b) \][/tex]