Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Write the product as a sum:

[tex]\[ 12 \cos (8q) \sin (7q) = \][/tex]


Sagot :

Certainly! Let's write the given product [tex]\( 12 \cos (8q) \sin (7q) \)[/tex] as a sum using trigonometric identities. We will use the product-to-sum formulas, specifically, the identity:

[tex]\[ \sin(A)\cos(B) = \frac{1}{2}[\sin(A+B) + \sin(A-B)] \][/tex]

Here, [tex]\( A = 7q \)[/tex] and [tex]\( B = 8q \)[/tex]. Therefore:

[tex]\[ \cos(8q) \sin(7q) = \frac{1}{2}[\sin(7q + 8q) + \sin(7q - 8q)] = \frac{1}{2}[\sin(15q) + \sin(-q)] \][/tex]

Since [tex]\( \sin(-x) = -\sin(x) \)[/tex], we can rewrite [tex]\( \sin(-q) \)[/tex]:

[tex]\[ \sin(-q) = -\sin(q) \][/tex]

Now, substituting this back into our formula, we get:

[tex]\[ \cos(8q) \sin(7q) = \frac{1}{2}[\sin(15q) - \sin(q)] \][/tex]

We need to multiply this expression by 12 to get the original expression:

[tex]\[ 12 \cos(8q) \sin(7q) = 12 \cdot \frac{1}{2}[\sin(15q) - \sin(q)] \][/tex]
[tex]\[ = 6[\sin(15q) - \sin(q)] \][/tex]
[tex]\[ = 6\sin(15q) - 6\sin(q) \][/tex]

Thus, the expression [tex]\( 12 \cos(8q) \sin(7q) \)[/tex] written as a sum is:

[tex]\[ 12 \cos(8q) \sin(7q) = 6\sin(15q) - 6\sin(q) \][/tex]

This is your final answer.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.