Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the equivalence of the given equations, we can solve for [tex]\( a \)[/tex] in the terms of [tex]\( n \)[/tex] and compare the results. Let’s start by examining each equation.
1. Equation 1: [tex]\( n = \frac{a}{180} + 1 \)[/tex]
To solve for [tex]\( a \)[/tex]:
[tex]\[ n = \frac{a}{180} + 1 \][/tex]
Subtract 1 from both sides:
[tex]\[ n - 1 = \frac{a}{180} \][/tex]
Multiply both sides by 180:
[tex]\[ a = 180(n - 1) \][/tex]
Simplifying:
[tex]\[ a = 180n - 180 \][/tex]
2. Equation 2: [tex]\( n = \frac{a}{180} + 2 \)[/tex]
To solve for [tex]\( a \)[/tex]:
[tex]\[ n = \frac{a}{180} + 2 \][/tex]
Subtract 2 from both sides:
[tex]\[ n - 2 = \frac{a}{180} \][/tex]
Multiply both sides by 180:
[tex]\[ a = 180(n - 2) \][/tex]
Simplifying:
[tex]\[ a = 180n - 360 \][/tex]
3. Equation 3: [tex]\( n = \frac{a + 360}{180} \)[/tex]
To solve for [tex]\( a \)[/tex]:
[tex]\[ n = \frac{a + 360}{180} \][/tex]
Multiply both sides by 180:
[tex]\[ 180n = a + 360 \][/tex]
Subtract 360 from both sides:
[tex]\[ a = 180n - 360 \][/tex]
Now, we compare the expressions for [tex]\( a \)[/tex] obtained from each equation:
- From Equation 1, we got [tex]\( a = 180n - 180 \)[/tex].
- From Equation 2, we got [tex]\( a = 180n - 360 \)[/tex].
- From Equation 3, we also got [tex]\( a = 180n - 360 \)[/tex].
Let's identify the equivalences:
- Equation 2 and Equation 3 yield the same expression: [tex]\( a = 180n - 360 \)[/tex], so they are equivalent.
- Equation 1 yields a different expression ([tex]\( a = 180n - 180 \)[/tex]) compared to Equation 2 and Equation 3.
Therefore, the final result is as follows:
- Equations 2 and 3 are equivalent.
- Equations 1 and 2 are not equivalent.
- Equations 1 and 3 are not equivalent.
So, the summary is:
- [tex]\( a = 180n - 180 \)[/tex] (Equation 1)
- [tex]\( a = 180n - 360 \)[/tex] (Equation 2 and Equation 3)
Equivalence check:
- Equation 1 and Equation 2: Not equivalent.
- Equation 1 and Equation 3: Not equivalent.
- Equation 2 and Equation 3: Equivalent.
1. Equation 1: [tex]\( n = \frac{a}{180} + 1 \)[/tex]
To solve for [tex]\( a \)[/tex]:
[tex]\[ n = \frac{a}{180} + 1 \][/tex]
Subtract 1 from both sides:
[tex]\[ n - 1 = \frac{a}{180} \][/tex]
Multiply both sides by 180:
[tex]\[ a = 180(n - 1) \][/tex]
Simplifying:
[tex]\[ a = 180n - 180 \][/tex]
2. Equation 2: [tex]\( n = \frac{a}{180} + 2 \)[/tex]
To solve for [tex]\( a \)[/tex]:
[tex]\[ n = \frac{a}{180} + 2 \][/tex]
Subtract 2 from both sides:
[tex]\[ n - 2 = \frac{a}{180} \][/tex]
Multiply both sides by 180:
[tex]\[ a = 180(n - 2) \][/tex]
Simplifying:
[tex]\[ a = 180n - 360 \][/tex]
3. Equation 3: [tex]\( n = \frac{a + 360}{180} \)[/tex]
To solve for [tex]\( a \)[/tex]:
[tex]\[ n = \frac{a + 360}{180} \][/tex]
Multiply both sides by 180:
[tex]\[ 180n = a + 360 \][/tex]
Subtract 360 from both sides:
[tex]\[ a = 180n - 360 \][/tex]
Now, we compare the expressions for [tex]\( a \)[/tex] obtained from each equation:
- From Equation 1, we got [tex]\( a = 180n - 180 \)[/tex].
- From Equation 2, we got [tex]\( a = 180n - 360 \)[/tex].
- From Equation 3, we also got [tex]\( a = 180n - 360 \)[/tex].
Let's identify the equivalences:
- Equation 2 and Equation 3 yield the same expression: [tex]\( a = 180n - 360 \)[/tex], so they are equivalent.
- Equation 1 yields a different expression ([tex]\( a = 180n - 180 \)[/tex]) compared to Equation 2 and Equation 3.
Therefore, the final result is as follows:
- Equations 2 and 3 are equivalent.
- Equations 1 and 2 are not equivalent.
- Equations 1 and 3 are not equivalent.
So, the summary is:
- [tex]\( a = 180n - 180 \)[/tex] (Equation 1)
- [tex]\( a = 180n - 360 \)[/tex] (Equation 2 and Equation 3)
Equivalence check:
- Equation 1 and Equation 2: Not equivalent.
- Equation 1 and Equation 3: Not equivalent.
- Equation 2 and Equation 3: Equivalent.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.