At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the magnitude of the vertical velocity component of the stone just before it hits the ground, we follow several steps. Here's the step-by-step solution:
1. Initial Parameters:
- Initial speed ([tex]\( v_0 \)[/tex]) = 15 m/s
- Launch angle ([tex]\( \theta \)[/tex]) = 53° (above the horizontal)
- Height of the building ([tex]\( h \)[/tex]) = 35 meters
- Acceleration due to gravity ([tex]\( g \)[/tex]) = 9.8 m/s²
2. Convert the angle to radians:
[tex]\[ \theta_{\text{rad}} = \frac{\pi}{180} \times 53° \approx 0.925 \text{ radians} \][/tex]
3. Calculate the initial vertical velocity component:
The vertical component of the initial velocity ([tex]\( v_{0_y} \)[/tex]) can be found using:
[tex]\[ v_{0_y} = v_0 \sin(\theta_{\text{rad}}) \][/tex]
Substituting the values:
[tex]\[ v_{0_y} = 15 \times \sin(0.925) \approx 11.98 \text{ m/s} \][/tex]
4. Determine the time it takes for the stone to hit the ground:
We use the kinematic equation for vertical motion:
[tex]\[ h = v_{0_y} t + \frac{1}{2} (-g) t^2 \][/tex]
Rearrange to form a standard quadratic equation in terms of [tex]\( t \)[/tex]:
[tex]\[ 0 = \frac{1}{2} g t^2 + v_{0_y} t - h \][/tex]
Substituting the values:
[tex]\[ 0 = \frac{1}{2} \times 9.8 \times t^2 + 11.98 \times t - 35 \][/tex]
Solve the quadratic equation:
[tex]\[ 4.9 t^2 + 11.98 t - 35 = 0 \][/tex]
Using the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 4.9 \)[/tex], [tex]\( b = 11.98 \)[/tex], and [tex]\( c = -35 \)[/tex]:
The discriminant ([tex]\( \Delta \)[/tex]) is:
[tex]\[ \Delta = b^2 - 4ac = (11.98)^2 - 4 \times 4.9 \times (-35) \approx 816.22 \][/tex]
The positive root (since time cannot be negative) is:
[tex]\[ t = \frac{-11.98 + \sqrt{816.22}}{9.8} \approx 4.16 \text{ seconds} \][/tex]
5. Calculate the vertical velocity just before hitting the ground:
Using the kinematic equation for vertical velocity:
[tex]\[ v_{y} = v_{0_y} - g t \][/tex]
Substituting the values:
[tex]\[ v_y = 11.98 - 9.8 \times 4.16 \approx -52.76 \text{ m/s} \][/tex]
The negative sign indicates that the velocity direction is downward.
6. Magnitude of the vertical velocity component:
The magnitude of the vertical velocity component just before the stone hits the ground is:
[tex]\[ |v_y| = 52.76 \text{ m/s} \][/tex]
Therefore, the magnitude of the vertical velocity component as the rock hits the ground is approximately 52.76 m/s.
Given the choices:
a. 9.0 m/s
b. 14 m/s
c. 18 m/s
d. 26 m/s
e. 29 m/s
None of the provided options correctly match the calculated magnitude of 52.76 m/s. Hence, based on our calculations, the correct answer is not listed among the provided options.
1. Initial Parameters:
- Initial speed ([tex]\( v_0 \)[/tex]) = 15 m/s
- Launch angle ([tex]\( \theta \)[/tex]) = 53° (above the horizontal)
- Height of the building ([tex]\( h \)[/tex]) = 35 meters
- Acceleration due to gravity ([tex]\( g \)[/tex]) = 9.8 m/s²
2. Convert the angle to radians:
[tex]\[ \theta_{\text{rad}} = \frac{\pi}{180} \times 53° \approx 0.925 \text{ radians} \][/tex]
3. Calculate the initial vertical velocity component:
The vertical component of the initial velocity ([tex]\( v_{0_y} \)[/tex]) can be found using:
[tex]\[ v_{0_y} = v_0 \sin(\theta_{\text{rad}}) \][/tex]
Substituting the values:
[tex]\[ v_{0_y} = 15 \times \sin(0.925) \approx 11.98 \text{ m/s} \][/tex]
4. Determine the time it takes for the stone to hit the ground:
We use the kinematic equation for vertical motion:
[tex]\[ h = v_{0_y} t + \frac{1}{2} (-g) t^2 \][/tex]
Rearrange to form a standard quadratic equation in terms of [tex]\( t \)[/tex]:
[tex]\[ 0 = \frac{1}{2} g t^2 + v_{0_y} t - h \][/tex]
Substituting the values:
[tex]\[ 0 = \frac{1}{2} \times 9.8 \times t^2 + 11.98 \times t - 35 \][/tex]
Solve the quadratic equation:
[tex]\[ 4.9 t^2 + 11.98 t - 35 = 0 \][/tex]
Using the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 4.9 \)[/tex], [tex]\( b = 11.98 \)[/tex], and [tex]\( c = -35 \)[/tex]:
The discriminant ([tex]\( \Delta \)[/tex]) is:
[tex]\[ \Delta = b^2 - 4ac = (11.98)^2 - 4 \times 4.9 \times (-35) \approx 816.22 \][/tex]
The positive root (since time cannot be negative) is:
[tex]\[ t = \frac{-11.98 + \sqrt{816.22}}{9.8} \approx 4.16 \text{ seconds} \][/tex]
5. Calculate the vertical velocity just before hitting the ground:
Using the kinematic equation for vertical velocity:
[tex]\[ v_{y} = v_{0_y} - g t \][/tex]
Substituting the values:
[tex]\[ v_y = 11.98 - 9.8 \times 4.16 \approx -52.76 \text{ m/s} \][/tex]
The negative sign indicates that the velocity direction is downward.
6. Magnitude of the vertical velocity component:
The magnitude of the vertical velocity component just before the stone hits the ground is:
[tex]\[ |v_y| = 52.76 \text{ m/s} \][/tex]
Therefore, the magnitude of the vertical velocity component as the rock hits the ground is approximately 52.76 m/s.
Given the choices:
a. 9.0 m/s
b. 14 m/s
c. 18 m/s
d. 26 m/s
e. 29 m/s
None of the provided options correctly match the calculated magnitude of 52.76 m/s. Hence, based on our calculations, the correct answer is not listed among the provided options.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.