Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

The terminal side of an angle in standard position passes through [tex]P(15, -8)[/tex]. What is the value of [tex]\sin \theta[/tex]?

A. [tex]\sin \theta = -\frac{15}{17}[/tex]
B. [tex]\sin \theta = -\frac{8}{17}[/tex]
C. [tex]\sin \theta = \frac{8}{17}[/tex]
D. [tex]\sin \theta = \frac{15}{17}[/tex]


Sagot :

To determine the value of [tex]\(\sin \theta\)[/tex] given that the terminal side of the angle passes through the point [tex]\(P(15, -8)\)[/tex], follow these steps:

1. Identify the coordinates: The point [tex]\(P\)[/tex] is given as [tex]\((15, -8)\)[/tex].

2. Calculate the hypotenuse (r): The hypotenuse [tex]\(r\)[/tex] in this context is the distance from the origin to the point [tex]\(P(15, -8)\)[/tex]. This can be calculated using the distance formula:
[tex]\[ r = \sqrt{x^2 + y^2} \][/tex]
Here, [tex]\(x = 15\)[/tex] and [tex]\(y = -8\)[/tex].

Substituting these values in:
[tex]\[ r = \sqrt{15^2 + (-8)^2} = \sqrt{225 + 64} = \sqrt{289} = 17 \][/tex]

3. Determine [tex]\(\sin \theta\)[/tex]: The sine of the angle [tex]\(\theta\)[/tex] is given by:
[tex]\[ \sin \theta = \frac{y}{r} \][/tex]
Using [tex]\(y = -8\)[/tex] and [tex]\(r = 17\)[/tex]:
[tex]\[ \sin \theta = \frac{-8}{17} \][/tex]

From the steps above, we find that:
[tex]\[ \sin \theta = -\frac{8}{17} \][/tex]

Thus, the correct answer is:
[tex]\[ \sin \theta = -\frac{8}{17} \][/tex]