Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the value of [tex]\(\sin \theta\)[/tex] given that the terminal side of the angle passes through the point [tex]\(P(15, -8)\)[/tex], follow these steps:
1. Identify the coordinates: The point [tex]\(P\)[/tex] is given as [tex]\((15, -8)\)[/tex].
2. Calculate the hypotenuse (r): The hypotenuse [tex]\(r\)[/tex] in this context is the distance from the origin to the point [tex]\(P(15, -8)\)[/tex]. This can be calculated using the distance formula:
[tex]\[ r = \sqrt{x^2 + y^2} \][/tex]
Here, [tex]\(x = 15\)[/tex] and [tex]\(y = -8\)[/tex].
Substituting these values in:
[tex]\[ r = \sqrt{15^2 + (-8)^2} = \sqrt{225 + 64} = \sqrt{289} = 17 \][/tex]
3. Determine [tex]\(\sin \theta\)[/tex]: The sine of the angle [tex]\(\theta\)[/tex] is given by:
[tex]\[ \sin \theta = \frac{y}{r} \][/tex]
Using [tex]\(y = -8\)[/tex] and [tex]\(r = 17\)[/tex]:
[tex]\[ \sin \theta = \frac{-8}{17} \][/tex]
From the steps above, we find that:
[tex]\[ \sin \theta = -\frac{8}{17} \][/tex]
Thus, the correct answer is:
[tex]\[ \sin \theta = -\frac{8}{17} \][/tex]
1. Identify the coordinates: The point [tex]\(P\)[/tex] is given as [tex]\((15, -8)\)[/tex].
2. Calculate the hypotenuse (r): The hypotenuse [tex]\(r\)[/tex] in this context is the distance from the origin to the point [tex]\(P(15, -8)\)[/tex]. This can be calculated using the distance formula:
[tex]\[ r = \sqrt{x^2 + y^2} \][/tex]
Here, [tex]\(x = 15\)[/tex] and [tex]\(y = -8\)[/tex].
Substituting these values in:
[tex]\[ r = \sqrt{15^2 + (-8)^2} = \sqrt{225 + 64} = \sqrt{289} = 17 \][/tex]
3. Determine [tex]\(\sin \theta\)[/tex]: The sine of the angle [tex]\(\theta\)[/tex] is given by:
[tex]\[ \sin \theta = \frac{y}{r} \][/tex]
Using [tex]\(y = -8\)[/tex] and [tex]\(r = 17\)[/tex]:
[tex]\[ \sin \theta = \frac{-8}{17} \][/tex]
From the steps above, we find that:
[tex]\[ \sin \theta = -\frac{8}{17} \][/tex]
Thus, the correct answer is:
[tex]\[ \sin \theta = -\frac{8}{17} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.