Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the value of [tex]\(\sin \theta\)[/tex] given that the terminal side of the angle passes through the point [tex]\(P(15, -8)\)[/tex], follow these steps:
1. Identify the coordinates: The point [tex]\(P\)[/tex] is given as [tex]\((15, -8)\)[/tex].
2. Calculate the hypotenuse (r): The hypotenuse [tex]\(r\)[/tex] in this context is the distance from the origin to the point [tex]\(P(15, -8)\)[/tex]. This can be calculated using the distance formula:
[tex]\[ r = \sqrt{x^2 + y^2} \][/tex]
Here, [tex]\(x = 15\)[/tex] and [tex]\(y = -8\)[/tex].
Substituting these values in:
[tex]\[ r = \sqrt{15^2 + (-8)^2} = \sqrt{225 + 64} = \sqrt{289} = 17 \][/tex]
3. Determine [tex]\(\sin \theta\)[/tex]: The sine of the angle [tex]\(\theta\)[/tex] is given by:
[tex]\[ \sin \theta = \frac{y}{r} \][/tex]
Using [tex]\(y = -8\)[/tex] and [tex]\(r = 17\)[/tex]:
[tex]\[ \sin \theta = \frac{-8}{17} \][/tex]
From the steps above, we find that:
[tex]\[ \sin \theta = -\frac{8}{17} \][/tex]
Thus, the correct answer is:
[tex]\[ \sin \theta = -\frac{8}{17} \][/tex]
1. Identify the coordinates: The point [tex]\(P\)[/tex] is given as [tex]\((15, -8)\)[/tex].
2. Calculate the hypotenuse (r): The hypotenuse [tex]\(r\)[/tex] in this context is the distance from the origin to the point [tex]\(P(15, -8)\)[/tex]. This can be calculated using the distance formula:
[tex]\[ r = \sqrt{x^2 + y^2} \][/tex]
Here, [tex]\(x = 15\)[/tex] and [tex]\(y = -8\)[/tex].
Substituting these values in:
[tex]\[ r = \sqrt{15^2 + (-8)^2} = \sqrt{225 + 64} = \sqrt{289} = 17 \][/tex]
3. Determine [tex]\(\sin \theta\)[/tex]: The sine of the angle [tex]\(\theta\)[/tex] is given by:
[tex]\[ \sin \theta = \frac{y}{r} \][/tex]
Using [tex]\(y = -8\)[/tex] and [tex]\(r = 17\)[/tex]:
[tex]\[ \sin \theta = \frac{-8}{17} \][/tex]
From the steps above, we find that:
[tex]\[ \sin \theta = -\frac{8}{17} \][/tex]
Thus, the correct answer is:
[tex]\[ \sin \theta = -\frac{8}{17} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.