Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Given the equation of the parabola [tex]\( x^2 = 2y \)[/tex], let's determine the coordinates of the focus and the equation of the directrix step by step:
1. Rewrite the equation in standard form:
The given equation is [tex]\( x^2 = 2y \)[/tex]. This can be rewritten as [tex]\( y = \frac{x^2}{2} \)[/tex], which is in the form [tex]\( y = \frac{1}{2} x^2 \)[/tex].
2. Identify the standard form of a parabola:
Recall the standard form of a parabola that opens upwards or downwards: [tex]\( (x - h)^2 = 4p(y - k) \)[/tex].
3. Determine the values of [tex]\( h \)[/tex], [tex]\( k \)[/tex], and [tex]\( 4p \)[/tex]:
In the given equation [tex]\( x^2 = 2y \)[/tex], we can directly compare to get:
- [tex]\( h = 0 \)[/tex]
- [tex]\( k = 0 \)[/tex]
- [tex]\( 4p = 2 \)[/tex]
Solving for [tex]\( p \)[/tex], we get [tex]\( p = \frac{2}{4} = \frac{1}{2} \)[/tex].
4. Find the coordinates of the focus:
The coordinates of the focus for a parabola given by [tex]\( (x - h)^2 = 4p(y - k) \)[/tex] are [tex]\( (h, k + p) \)[/tex]. Plugging in the values we identified:
- [tex]\( h = 0 \)[/tex]
- [tex]\( k = 0 \)[/tex]
- [tex]\( p = \frac{1}{2} \)[/tex]
Thus, the coordinates of the focus are [tex]\( (0, 0 + \frac{1}{2}) = (0, \frac{1}{2}) \)[/tex].
5. Determine the equation of the directrix:
The equation of the directrix for the same form of a parabola is [tex]\( y = k - p \)[/tex]. Using the values again:
- [tex]\( k = 0 \)[/tex]
- [tex]\( p = \frac{1}{2} \)[/tex]
Therefore, the equation of the directrix is [tex]\( y = 0 - \frac{1}{2} = -\frac{1}{2} \)[/tex].
Hence, the coordinates of the focus are [tex]\( \left(0, \frac{1}{2}\right) \)[/tex] and the equation of the directrix is [tex]\( y = -\frac{1}{2} \)[/tex].
So the correct answer is:
focus: [tex]\(\left(0, \frac{1}{2}\right)\)[/tex]; directrix: [tex]\(y = -\frac{1}{2}\)[/tex].
1. Rewrite the equation in standard form:
The given equation is [tex]\( x^2 = 2y \)[/tex]. This can be rewritten as [tex]\( y = \frac{x^2}{2} \)[/tex], which is in the form [tex]\( y = \frac{1}{2} x^2 \)[/tex].
2. Identify the standard form of a parabola:
Recall the standard form of a parabola that opens upwards or downwards: [tex]\( (x - h)^2 = 4p(y - k) \)[/tex].
3. Determine the values of [tex]\( h \)[/tex], [tex]\( k \)[/tex], and [tex]\( 4p \)[/tex]:
In the given equation [tex]\( x^2 = 2y \)[/tex], we can directly compare to get:
- [tex]\( h = 0 \)[/tex]
- [tex]\( k = 0 \)[/tex]
- [tex]\( 4p = 2 \)[/tex]
Solving for [tex]\( p \)[/tex], we get [tex]\( p = \frac{2}{4} = \frac{1}{2} \)[/tex].
4. Find the coordinates of the focus:
The coordinates of the focus for a parabola given by [tex]\( (x - h)^2 = 4p(y - k) \)[/tex] are [tex]\( (h, k + p) \)[/tex]. Plugging in the values we identified:
- [tex]\( h = 0 \)[/tex]
- [tex]\( k = 0 \)[/tex]
- [tex]\( p = \frac{1}{2} \)[/tex]
Thus, the coordinates of the focus are [tex]\( (0, 0 + \frac{1}{2}) = (0, \frac{1}{2}) \)[/tex].
5. Determine the equation of the directrix:
The equation of the directrix for the same form of a parabola is [tex]\( y = k - p \)[/tex]. Using the values again:
- [tex]\( k = 0 \)[/tex]
- [tex]\( p = \frac{1}{2} \)[/tex]
Therefore, the equation of the directrix is [tex]\( y = 0 - \frac{1}{2} = -\frac{1}{2} \)[/tex].
Hence, the coordinates of the focus are [tex]\( \left(0, \frac{1}{2}\right) \)[/tex] and the equation of the directrix is [tex]\( y = -\frac{1}{2} \)[/tex].
So the correct answer is:
focus: [tex]\(\left(0, \frac{1}{2}\right)\)[/tex]; directrix: [tex]\(y = -\frac{1}{2}\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.