Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Given the equation of the parabola [tex]\( x^2 = 2y \)[/tex], let's determine the coordinates of the focus and the equation of the directrix step by step:
1. Rewrite the equation in standard form:
The given equation is [tex]\( x^2 = 2y \)[/tex]. This can be rewritten as [tex]\( y = \frac{x^2}{2} \)[/tex], which is in the form [tex]\( y = \frac{1}{2} x^2 \)[/tex].
2. Identify the standard form of a parabola:
Recall the standard form of a parabola that opens upwards or downwards: [tex]\( (x - h)^2 = 4p(y - k) \)[/tex].
3. Determine the values of [tex]\( h \)[/tex], [tex]\( k \)[/tex], and [tex]\( 4p \)[/tex]:
In the given equation [tex]\( x^2 = 2y \)[/tex], we can directly compare to get:
- [tex]\( h = 0 \)[/tex]
- [tex]\( k = 0 \)[/tex]
- [tex]\( 4p = 2 \)[/tex]
Solving for [tex]\( p \)[/tex], we get [tex]\( p = \frac{2}{4} = \frac{1}{2} \)[/tex].
4. Find the coordinates of the focus:
The coordinates of the focus for a parabola given by [tex]\( (x - h)^2 = 4p(y - k) \)[/tex] are [tex]\( (h, k + p) \)[/tex]. Plugging in the values we identified:
- [tex]\( h = 0 \)[/tex]
- [tex]\( k = 0 \)[/tex]
- [tex]\( p = \frac{1}{2} \)[/tex]
Thus, the coordinates of the focus are [tex]\( (0, 0 + \frac{1}{2}) = (0, \frac{1}{2}) \)[/tex].
5. Determine the equation of the directrix:
The equation of the directrix for the same form of a parabola is [tex]\( y = k - p \)[/tex]. Using the values again:
- [tex]\( k = 0 \)[/tex]
- [tex]\( p = \frac{1}{2} \)[/tex]
Therefore, the equation of the directrix is [tex]\( y = 0 - \frac{1}{2} = -\frac{1}{2} \)[/tex].
Hence, the coordinates of the focus are [tex]\( \left(0, \frac{1}{2}\right) \)[/tex] and the equation of the directrix is [tex]\( y = -\frac{1}{2} \)[/tex].
So the correct answer is:
focus: [tex]\(\left(0, \frac{1}{2}\right)\)[/tex]; directrix: [tex]\(y = -\frac{1}{2}\)[/tex].
1. Rewrite the equation in standard form:
The given equation is [tex]\( x^2 = 2y \)[/tex]. This can be rewritten as [tex]\( y = \frac{x^2}{2} \)[/tex], which is in the form [tex]\( y = \frac{1}{2} x^2 \)[/tex].
2. Identify the standard form of a parabola:
Recall the standard form of a parabola that opens upwards or downwards: [tex]\( (x - h)^2 = 4p(y - k) \)[/tex].
3. Determine the values of [tex]\( h \)[/tex], [tex]\( k \)[/tex], and [tex]\( 4p \)[/tex]:
In the given equation [tex]\( x^2 = 2y \)[/tex], we can directly compare to get:
- [tex]\( h = 0 \)[/tex]
- [tex]\( k = 0 \)[/tex]
- [tex]\( 4p = 2 \)[/tex]
Solving for [tex]\( p \)[/tex], we get [tex]\( p = \frac{2}{4} = \frac{1}{2} \)[/tex].
4. Find the coordinates of the focus:
The coordinates of the focus for a parabola given by [tex]\( (x - h)^2 = 4p(y - k) \)[/tex] are [tex]\( (h, k + p) \)[/tex]. Plugging in the values we identified:
- [tex]\( h = 0 \)[/tex]
- [tex]\( k = 0 \)[/tex]
- [tex]\( p = \frac{1}{2} \)[/tex]
Thus, the coordinates of the focus are [tex]\( (0, 0 + \frac{1}{2}) = (0, \frac{1}{2}) \)[/tex].
5. Determine the equation of the directrix:
The equation of the directrix for the same form of a parabola is [tex]\( y = k - p \)[/tex]. Using the values again:
- [tex]\( k = 0 \)[/tex]
- [tex]\( p = \frac{1}{2} \)[/tex]
Therefore, the equation of the directrix is [tex]\( y = 0 - \frac{1}{2} = -\frac{1}{2} \)[/tex].
Hence, the coordinates of the focus are [tex]\( \left(0, \frac{1}{2}\right) \)[/tex] and the equation of the directrix is [tex]\( y = -\frac{1}{2} \)[/tex].
So the correct answer is:
focus: [tex]\(\left(0, \frac{1}{2}\right)\)[/tex]; directrix: [tex]\(y = -\frac{1}{2}\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.