At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the value of [tex]\(\sec \theta\)[/tex] when [tex]\(\tan \theta = -1\)[/tex] and [tex]\(\frac{3 \pi}{2} < \theta < 2 \pi\)[/tex], follow these steps:
1. Identify the Quadrant:
- The given range [tex]\(\frac{3 \pi}{2} < \theta < 2 \pi\)[/tex] places [tex]\(\theta\)[/tex] in the fourth quadrant.
2. Analyze the tangent function:
- In the fourth quadrant, the tangent function ([tex]\(\tan \theta\)[/tex]) is negative.
- Given [tex]\(\tan \theta = -1\)[/tex], we know the angle where this is true is one where the reference angle corresponds to 45 degrees ([tex]\(\frac{\pi}{4}\)[/tex]).
3. Determine the specific angle:
- An angle in the fourth quadrant that fits this criteria is [tex]\(\theta = 2\pi - \frac{\pi}{4} = \frac{7\pi}{4}\)[/tex].
4. Calculate [tex]\(\cos \theta\)[/tex]:
- For [tex]\(\theta = \frac{7\pi}{4}\)[/tex], the reference angle is [tex]\(\frac{\pi}{4}\)[/tex].
- In the fourth quadrant, [tex]\(\cos \theta\)[/tex] is positive.
- Hence, [tex]\(\cos \left( \frac{7\pi}{4} \right) = \cos \left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2}\)[/tex].
5. Determine [tex]\(\sec \theta\)[/tex]:
- The secant function is the reciprocal of the cosine function.
- Therefore, [tex]\(\sec \theta = \frac{1}{\cos \theta}\)[/tex].
6. Apply the value of [tex]\(\cos \theta\)[/tex]:
- [tex]\(\sec \left( \frac{7\pi}{4} \right) = \frac{1}{\cos \left( \frac{7\pi}{4} \right)} = \frac{1}{\frac{\sqrt{2}}{2}} = \sqrt{2}\)[/tex].
Thus, the value of [tex]\(\sec \theta\)[/tex] is [tex]\(\boxed{\sqrt{2}}\)[/tex].
1. Identify the Quadrant:
- The given range [tex]\(\frac{3 \pi}{2} < \theta < 2 \pi\)[/tex] places [tex]\(\theta\)[/tex] in the fourth quadrant.
2. Analyze the tangent function:
- In the fourth quadrant, the tangent function ([tex]\(\tan \theta\)[/tex]) is negative.
- Given [tex]\(\tan \theta = -1\)[/tex], we know the angle where this is true is one where the reference angle corresponds to 45 degrees ([tex]\(\frac{\pi}{4}\)[/tex]).
3. Determine the specific angle:
- An angle in the fourth quadrant that fits this criteria is [tex]\(\theta = 2\pi - \frac{\pi}{4} = \frac{7\pi}{4}\)[/tex].
4. Calculate [tex]\(\cos \theta\)[/tex]:
- For [tex]\(\theta = \frac{7\pi}{4}\)[/tex], the reference angle is [tex]\(\frac{\pi}{4}\)[/tex].
- In the fourth quadrant, [tex]\(\cos \theta\)[/tex] is positive.
- Hence, [tex]\(\cos \left( \frac{7\pi}{4} \right) = \cos \left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2}\)[/tex].
5. Determine [tex]\(\sec \theta\)[/tex]:
- The secant function is the reciprocal of the cosine function.
- Therefore, [tex]\(\sec \theta = \frac{1}{\cos \theta}\)[/tex].
6. Apply the value of [tex]\(\cos \theta\)[/tex]:
- [tex]\(\sec \left( \frac{7\pi}{4} \right) = \frac{1}{\cos \left( \frac{7\pi}{4} \right)} = \frac{1}{\frac{\sqrt{2}}{2}} = \sqrt{2}\)[/tex].
Thus, the value of [tex]\(\sec \theta\)[/tex] is [tex]\(\boxed{\sqrt{2}}\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.