Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure! Let's work through the binomial multiplication step-by-step to determine the values of the letters [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex].
The binomial multiplication represented is [tex]\((x + 7)(2x - 3)\)[/tex]. We need to determine the values in the resulting multiplication table.
[tex]\[ \begin{array}{|c|c|c|} \hline & x & 7 \\ \hline 2x & 2x^2 & B \\ \hline -3 & A & C \\ \hline \end{array} \][/tex]
Let's fill in each cell:
1. Top left cell: [tex]\(2x \times x = 2x^2\)[/tex] (This is already given)
2. Top right cell (B): [tex]\(2x \times 7 = 14x\)[/tex]
3. Bottom left cell (A): [tex]\(-3 \times x = -3x\)[/tex]
4. Bottom right cell (C): [tex]\(-3 \times 7 = -21\)[/tex]
Now we have filled in the table:
[tex]\[ \begin{array}{|c|c|c|} \hline & x & 7 \\ \hline 2x & 2x^2 & 14x \\ \hline -3 & -3x & -21 \\ \hline \end{array} \][/tex]
Hence, the values of the letters in the table are:
[tex]\[ A = -3x, \quad B = 14x, \quad C = -21 \][/tex]
To identify like terms:
- Like terms are terms that contain the same variable raised to the same power.
- In this case, [tex]\(A = -3x\)[/tex] and [tex]\(B = 14x\)[/tex] are like terms because they both contain the variable [tex]\(x\)[/tex] raised to the first power.
So, the letters from the table that represent like terms are [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
Thus, the solution is:
[tex]\[ A = -3x, \quad B = 14x, \quad C = -21 \][/tex]
The like terms are [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
The binomial multiplication represented is [tex]\((x + 7)(2x - 3)\)[/tex]. We need to determine the values in the resulting multiplication table.
[tex]\[ \begin{array}{|c|c|c|} \hline & x & 7 \\ \hline 2x & 2x^2 & B \\ \hline -3 & A & C \\ \hline \end{array} \][/tex]
Let's fill in each cell:
1. Top left cell: [tex]\(2x \times x = 2x^2\)[/tex] (This is already given)
2. Top right cell (B): [tex]\(2x \times 7 = 14x\)[/tex]
3. Bottom left cell (A): [tex]\(-3 \times x = -3x\)[/tex]
4. Bottom right cell (C): [tex]\(-3 \times 7 = -21\)[/tex]
Now we have filled in the table:
[tex]\[ \begin{array}{|c|c|c|} \hline & x & 7 \\ \hline 2x & 2x^2 & 14x \\ \hline -3 & -3x & -21 \\ \hline \end{array} \][/tex]
Hence, the values of the letters in the table are:
[tex]\[ A = -3x, \quad B = 14x, \quad C = -21 \][/tex]
To identify like terms:
- Like terms are terms that contain the same variable raised to the same power.
- In this case, [tex]\(A = -3x\)[/tex] and [tex]\(B = 14x\)[/tex] are like terms because they both contain the variable [tex]\(x\)[/tex] raised to the first power.
So, the letters from the table that represent like terms are [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
Thus, the solution is:
[tex]\[ A = -3x, \quad B = 14x, \quad C = -21 \][/tex]
The like terms are [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.