Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

The table shows Sofia's payment schedule for the first year of a 3-year loan of [tex]$\$[/tex]17,250[tex]$ at an interest rate of $[/tex]3\%[tex]$.

\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Principal} & \textbf{Interest Rate} & \textbf{Term} & \\
\hline
$[/tex]\[tex]$17,250$[/tex] & [tex]$3.0\%$[/tex] & 3 years & \\
\hline
\multicolumn{3}{|c|}{\textbf{Your Monthly Payment}} & \[tex]$501.65 \\
\hline
\multicolumn{3}{|c|}{\textbf{Total Interest Paid (Life of Loan)}} & \$[/tex]809.43 \\
\hline
\textbf{Month} & \textbf{Principal Paid} & \textbf{Interest Paid} & \textbf{Principal Balance} \\
\hline
1 & \[tex]$458.53 & \$[/tex]43.13 & \[tex]$16,791.47 \\
\hline
2 & \$[/tex]459.67 & \[tex]$41.96 & \$[/tex]16,331.80 \\
\hline
3 & \[tex]$460.82 & \$[/tex]40.83 & \[tex]$15,870.98 \\
\hline
4 & \$[/tex]461.97 & \[tex]$39.68 & \$[/tex]15,409.01 \\
\hline
5 & \[tex]$463.13 & \$[/tex]38.52 & \[tex]$14,945.88 \\
\hline
6 & \$[/tex]464.29 & \[tex]$37.36 & \$[/tex]14,481.59 \\
\hline
7 & \[tex]$465.45 & \$[/tex]36.20 & \[tex]$14,016.15 \\
\hline
8 & \$[/tex]466.61 & \[tex]$35.04 & \$[/tex]13,549.54 \\
\hline
9 & \[tex]$467.78 & \$[/tex]33.87 & \[tex]$13,061.76 \\
\hline
10 & \$[/tex]468.95 & \[tex]$32.70 & \$[/tex]12,612.81 \\
\hline
11 & \[tex]$470.12 & \$[/tex]31.53 & \[tex]$12,142.69 \\
\hline
12 & \$[/tex]471.29 & \[tex]$30.36 & \$[/tex]11,671.40 \\
\hline
\end{tabular}

Part A
Open the graphing tool to see the data on a scatter plot, where the month is the independent variable and the principal balance is the dependent variable.

1. Select "Relationship."
2. Select "Linear."
3. Check the "Best fit" box.
4. Observe the best fit function calculated and provided underneath the graph.

Sagot :

To solve this problem meticulously, let’s start by explaining each step of the solution:

### Step 1: Understanding the Problem
We need to plot the principal balance over time as a graph where the month is the independent variable and the principal balance is the dependent variable. We aim to observe the relationship and find a linear best fit function for this data.

### Step 2: Extract the Data Points
We extract the monthly data from the table. Let's organize it into two arrays: one for the months and one for the principal balances.

- Months (Independent Variable): [tex]\( x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] \)[/tex]
- Principal Balance (Dependent Variable): [tex]\( y = [16791.47, 16331.80, 15870.98, 15409.01, 14945.88, 14481.59, 14016.15, 13549.54, 13061.76, 12612.81, 12142.69, 11671.40] \)[/tex]

### Step 3: Plotting the Data Points
Imagine plotting these data points on a scatter plot with the months on the x-axis and the principal balances on the y-axis.

### Step 4: Finding the Linear Best Fit
To find the linear best fit to these points, we use the method of least squares to calculate the slope ([tex]\(m\)[/tex]) and y-intercept ([tex]\(b\)[/tex]) of the best fit line. The linear best fit can be written in the form:

[tex]\[ y = mx + b \][/tex]

### Step 5: Calculation
#### Compute the slope ([tex]\(m\)[/tex]):
The slope of the line [tex]\( m \)[/tex] is calculated using the formula:

[tex]\[ m = \frac{N \sum{xy} - \sum{x} \sum{y}}{N \sum{x^2} - (\sum{x})^2} \][/tex]

Where [tex]\( N \)[/tex] is the number of data points, [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are arrays of the independent and dependent variables, respectively. Here, we have 12 data points (N = 12).

#### Compute the y-intercept ([tex]\(b\)[/tex]):
The y-intercept [tex]\( b \)[/tex] is calculated using the formula:

[tex]\[ b = \frac{\sum{y} - m \sum{x}}{N} \][/tex]

### Step 6: Perform the Calculations:

First, calculate the necessary sums:

[tex]\[ \sum{x} = 1 + 2 + \ldots + 12 = 78 \][/tex]
[tex]\[ \sum{y} = 16791.47 + 16331.80 + \ldots + 11671.40 = 167386.08 \][/tex]
[tex]\[ \sum{xy} = (1 \times 16791.47) + (2 \times 16331.80) + \ldots + (12 \times 11671.40) = 1040203.74 \][/tex]
[tex]\[ \sum{x^2} = 1^2 + 2^2 + \ldots + 12^2 = 650 \][/tex]

Substitute these sums into the formulas for [tex]\( m \)[/tex] and [tex]\( b \)[/tex]:

[tex]\[ m = \frac{12 \times 1040203.74 - 78 \times 167386.08}{12 \times 650 - 78^2} \approx \frac{12482444.88 - 13056234.24}{7800 - 6084} \approx \frac{-573789.36}{1716} \approx -334.44 \][/tex]

[tex]\[ b = \frac{167386.08 - (-334.44 \times 78)}{12} \approx \frac{167386.08 + 26086.32}{12} \approx \frac{193472.40}{12} \approx 16122.70 \][/tex]

### Step 7: Conclusion
The best fit linear function that describes the relationship between the month and the principal balance is:

[tex]\[ y = -334.44x + 16122.70 \][/tex]

This means that for every additional month, the principal balance decreases by approximately [tex]$334.44, starting from an approximate initial principal balance of \$[/tex]16122.70 in the first month.