Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the magnitude of the charge of a particle moving in a magnetic field, we use the formula for the magnetic force exerted on a moving charged particle:
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
Where:
- [tex]\( F \)[/tex] is the magnetic force (in Newtons, [tex]\( N \)[/tex])
- [tex]\( q \)[/tex] is the charge of the particle (in Coulombs, [tex]\( C \)[/tex])
- [tex]\( v \)[/tex] is the velocity of the particle (in meters per second, [tex]\( m/s \)[/tex])
- [tex]\( B \)[/tex] is the magnetic field strength (in Tesla, [tex]\( T \)[/tex])
- [tex]\( \theta \)[/tex] is the angle between the velocity and the magnetic field (in degrees, [tex]\( ^\circ \)[/tex])
We need to solve for [tex]\( q \)[/tex]. Rearranging the formula to solve for [tex]\( q \)[/tex], we get:
[tex]\[ q = \frac{F}{v \cdot B \cdot \sin(\theta)} \][/tex]
Given values:
- [tex]\( v = 5.2 \times 10^4 \, m/s \)[/tex]
- [tex]\( \theta = 35^\circ \)[/tex]
- [tex]\( B = 0.0045 \, T \)[/tex]
- [tex]\( F = 0.003087 \, N \)[/tex]
First, convert the angle from degrees to radians:
[tex]\[ \theta_{rad} = \frac{35 \times \pi}{180} \][/tex]
[tex]\[ \theta_{rad} \approx 0.610865238 \][/tex]
Now we substitute all values into the formula:
[tex]\[ q = \frac{0.003087 \, N}{(5.2 \times 10^4 \, m/s) \cdot 0.0045 \, T \cdot \sin(0.610865238)} \][/tex]
From the earlier calculation, we know that:
[tex]\[ \sin(0.610865238) \approx 0.573576436 \][/tex]
Now perform the calculation:
[tex]\[ q = \frac{0.003087}{5.2 \times 10^4 \times 0.0045 \times 0.573576436} \][/tex]
[tex]\[ q \approx 2.300008657 \times 10^{-5} \, C \][/tex]
The magnitude of the charge is approximately [tex]\( 2.300008657 \times 10^{-5} \, C \)[/tex], which can be converted to microcoulombs ([tex]\( \mu C \)[/tex]):
[tex]\[ q \approx 2.3 \times 10^{-5} \, C \][/tex]
[tex]\[ q = 23 \, \mu C \][/tex]
Thus, the magnitude of the charge is [tex]\( 23 \, \mu C \)[/tex], corresponding to the second option provided:
[tex]\[ \boxed{23 \, \mu C} \][/tex]
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
Where:
- [tex]\( F \)[/tex] is the magnetic force (in Newtons, [tex]\( N \)[/tex])
- [tex]\( q \)[/tex] is the charge of the particle (in Coulombs, [tex]\( C \)[/tex])
- [tex]\( v \)[/tex] is the velocity of the particle (in meters per second, [tex]\( m/s \)[/tex])
- [tex]\( B \)[/tex] is the magnetic field strength (in Tesla, [tex]\( T \)[/tex])
- [tex]\( \theta \)[/tex] is the angle between the velocity and the magnetic field (in degrees, [tex]\( ^\circ \)[/tex])
We need to solve for [tex]\( q \)[/tex]. Rearranging the formula to solve for [tex]\( q \)[/tex], we get:
[tex]\[ q = \frac{F}{v \cdot B \cdot \sin(\theta)} \][/tex]
Given values:
- [tex]\( v = 5.2 \times 10^4 \, m/s \)[/tex]
- [tex]\( \theta = 35^\circ \)[/tex]
- [tex]\( B = 0.0045 \, T \)[/tex]
- [tex]\( F = 0.003087 \, N \)[/tex]
First, convert the angle from degrees to radians:
[tex]\[ \theta_{rad} = \frac{35 \times \pi}{180} \][/tex]
[tex]\[ \theta_{rad} \approx 0.610865238 \][/tex]
Now we substitute all values into the formula:
[tex]\[ q = \frac{0.003087 \, N}{(5.2 \times 10^4 \, m/s) \cdot 0.0045 \, T \cdot \sin(0.610865238)} \][/tex]
From the earlier calculation, we know that:
[tex]\[ \sin(0.610865238) \approx 0.573576436 \][/tex]
Now perform the calculation:
[tex]\[ q = \frac{0.003087}{5.2 \times 10^4 \times 0.0045 \times 0.573576436} \][/tex]
[tex]\[ q \approx 2.300008657 \times 10^{-5} \, C \][/tex]
The magnitude of the charge is approximately [tex]\( 2.300008657 \times 10^{-5} \, C \)[/tex], which can be converted to microcoulombs ([tex]\( \mu C \)[/tex]):
[tex]\[ q \approx 2.3 \times 10^{-5} \, C \][/tex]
[tex]\[ q = 23 \, \mu C \][/tex]
Thus, the magnitude of the charge is [tex]\( 23 \, \mu C \)[/tex], corresponding to the second option provided:
[tex]\[ \boxed{23 \, \mu C} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.