Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the magnitude of the charge of a particle moving in a magnetic field, we use the formula for the magnetic force exerted on a moving charged particle:
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
Where:
- [tex]\( F \)[/tex] is the magnetic force (in Newtons, [tex]\( N \)[/tex])
- [tex]\( q \)[/tex] is the charge of the particle (in Coulombs, [tex]\( C \)[/tex])
- [tex]\( v \)[/tex] is the velocity of the particle (in meters per second, [tex]\( m/s \)[/tex])
- [tex]\( B \)[/tex] is the magnetic field strength (in Tesla, [tex]\( T \)[/tex])
- [tex]\( \theta \)[/tex] is the angle between the velocity and the magnetic field (in degrees, [tex]\( ^\circ \)[/tex])
We need to solve for [tex]\( q \)[/tex]. Rearranging the formula to solve for [tex]\( q \)[/tex], we get:
[tex]\[ q = \frac{F}{v \cdot B \cdot \sin(\theta)} \][/tex]
Given values:
- [tex]\( v = 5.2 \times 10^4 \, m/s \)[/tex]
- [tex]\( \theta = 35^\circ \)[/tex]
- [tex]\( B = 0.0045 \, T \)[/tex]
- [tex]\( F = 0.003087 \, N \)[/tex]
First, convert the angle from degrees to radians:
[tex]\[ \theta_{rad} = \frac{35 \times \pi}{180} \][/tex]
[tex]\[ \theta_{rad} \approx 0.610865238 \][/tex]
Now we substitute all values into the formula:
[tex]\[ q = \frac{0.003087 \, N}{(5.2 \times 10^4 \, m/s) \cdot 0.0045 \, T \cdot \sin(0.610865238)} \][/tex]
From the earlier calculation, we know that:
[tex]\[ \sin(0.610865238) \approx 0.573576436 \][/tex]
Now perform the calculation:
[tex]\[ q = \frac{0.003087}{5.2 \times 10^4 \times 0.0045 \times 0.573576436} \][/tex]
[tex]\[ q \approx 2.300008657 \times 10^{-5} \, C \][/tex]
The magnitude of the charge is approximately [tex]\( 2.300008657 \times 10^{-5} \, C \)[/tex], which can be converted to microcoulombs ([tex]\( \mu C \)[/tex]):
[tex]\[ q \approx 2.3 \times 10^{-5} \, C \][/tex]
[tex]\[ q = 23 \, \mu C \][/tex]
Thus, the magnitude of the charge is [tex]\( 23 \, \mu C \)[/tex], corresponding to the second option provided:
[tex]\[ \boxed{23 \, \mu C} \][/tex]
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
Where:
- [tex]\( F \)[/tex] is the magnetic force (in Newtons, [tex]\( N \)[/tex])
- [tex]\( q \)[/tex] is the charge of the particle (in Coulombs, [tex]\( C \)[/tex])
- [tex]\( v \)[/tex] is the velocity of the particle (in meters per second, [tex]\( m/s \)[/tex])
- [tex]\( B \)[/tex] is the magnetic field strength (in Tesla, [tex]\( T \)[/tex])
- [tex]\( \theta \)[/tex] is the angle between the velocity and the magnetic field (in degrees, [tex]\( ^\circ \)[/tex])
We need to solve for [tex]\( q \)[/tex]. Rearranging the formula to solve for [tex]\( q \)[/tex], we get:
[tex]\[ q = \frac{F}{v \cdot B \cdot \sin(\theta)} \][/tex]
Given values:
- [tex]\( v = 5.2 \times 10^4 \, m/s \)[/tex]
- [tex]\( \theta = 35^\circ \)[/tex]
- [tex]\( B = 0.0045 \, T \)[/tex]
- [tex]\( F = 0.003087 \, N \)[/tex]
First, convert the angle from degrees to radians:
[tex]\[ \theta_{rad} = \frac{35 \times \pi}{180} \][/tex]
[tex]\[ \theta_{rad} \approx 0.610865238 \][/tex]
Now we substitute all values into the formula:
[tex]\[ q = \frac{0.003087 \, N}{(5.2 \times 10^4 \, m/s) \cdot 0.0045 \, T \cdot \sin(0.610865238)} \][/tex]
From the earlier calculation, we know that:
[tex]\[ \sin(0.610865238) \approx 0.573576436 \][/tex]
Now perform the calculation:
[tex]\[ q = \frac{0.003087}{5.2 \times 10^4 \times 0.0045 \times 0.573576436} \][/tex]
[tex]\[ q \approx 2.300008657 \times 10^{-5} \, C \][/tex]
The magnitude of the charge is approximately [tex]\( 2.300008657 \times 10^{-5} \, C \)[/tex], which can be converted to microcoulombs ([tex]\( \mu C \)[/tex]):
[tex]\[ q \approx 2.3 \times 10^{-5} \, C \][/tex]
[tex]\[ q = 23 \, \mu C \][/tex]
Thus, the magnitude of the charge is [tex]\( 23 \, \mu C \)[/tex], corresponding to the second option provided:
[tex]\[ \boxed{23 \, \mu C} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.