Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the magnitude of the charge of a particle moving in a magnetic field, we use the formula for the magnetic force exerted on a moving charged particle:
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
Where:
- [tex]\( F \)[/tex] is the magnetic force (in Newtons, [tex]\( N \)[/tex])
- [tex]\( q \)[/tex] is the charge of the particle (in Coulombs, [tex]\( C \)[/tex])
- [tex]\( v \)[/tex] is the velocity of the particle (in meters per second, [tex]\( m/s \)[/tex])
- [tex]\( B \)[/tex] is the magnetic field strength (in Tesla, [tex]\( T \)[/tex])
- [tex]\( \theta \)[/tex] is the angle between the velocity and the magnetic field (in degrees, [tex]\( ^\circ \)[/tex])
We need to solve for [tex]\( q \)[/tex]. Rearranging the formula to solve for [tex]\( q \)[/tex], we get:
[tex]\[ q = \frac{F}{v \cdot B \cdot \sin(\theta)} \][/tex]
Given values:
- [tex]\( v = 5.2 \times 10^4 \, m/s \)[/tex]
- [tex]\( \theta = 35^\circ \)[/tex]
- [tex]\( B = 0.0045 \, T \)[/tex]
- [tex]\( F = 0.003087 \, N \)[/tex]
First, convert the angle from degrees to radians:
[tex]\[ \theta_{rad} = \frac{35 \times \pi}{180} \][/tex]
[tex]\[ \theta_{rad} \approx 0.610865238 \][/tex]
Now we substitute all values into the formula:
[tex]\[ q = \frac{0.003087 \, N}{(5.2 \times 10^4 \, m/s) \cdot 0.0045 \, T \cdot \sin(0.610865238)} \][/tex]
From the earlier calculation, we know that:
[tex]\[ \sin(0.610865238) \approx 0.573576436 \][/tex]
Now perform the calculation:
[tex]\[ q = \frac{0.003087}{5.2 \times 10^4 \times 0.0045 \times 0.573576436} \][/tex]
[tex]\[ q \approx 2.300008657 \times 10^{-5} \, C \][/tex]
The magnitude of the charge is approximately [tex]\( 2.300008657 \times 10^{-5} \, C \)[/tex], which can be converted to microcoulombs ([tex]\( \mu C \)[/tex]):
[tex]\[ q \approx 2.3 \times 10^{-5} \, C \][/tex]
[tex]\[ q = 23 \, \mu C \][/tex]
Thus, the magnitude of the charge is [tex]\( 23 \, \mu C \)[/tex], corresponding to the second option provided:
[tex]\[ \boxed{23 \, \mu C} \][/tex]
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
Where:
- [tex]\( F \)[/tex] is the magnetic force (in Newtons, [tex]\( N \)[/tex])
- [tex]\( q \)[/tex] is the charge of the particle (in Coulombs, [tex]\( C \)[/tex])
- [tex]\( v \)[/tex] is the velocity of the particle (in meters per second, [tex]\( m/s \)[/tex])
- [tex]\( B \)[/tex] is the magnetic field strength (in Tesla, [tex]\( T \)[/tex])
- [tex]\( \theta \)[/tex] is the angle between the velocity and the magnetic field (in degrees, [tex]\( ^\circ \)[/tex])
We need to solve for [tex]\( q \)[/tex]. Rearranging the formula to solve for [tex]\( q \)[/tex], we get:
[tex]\[ q = \frac{F}{v \cdot B \cdot \sin(\theta)} \][/tex]
Given values:
- [tex]\( v = 5.2 \times 10^4 \, m/s \)[/tex]
- [tex]\( \theta = 35^\circ \)[/tex]
- [tex]\( B = 0.0045 \, T \)[/tex]
- [tex]\( F = 0.003087 \, N \)[/tex]
First, convert the angle from degrees to radians:
[tex]\[ \theta_{rad} = \frac{35 \times \pi}{180} \][/tex]
[tex]\[ \theta_{rad} \approx 0.610865238 \][/tex]
Now we substitute all values into the formula:
[tex]\[ q = \frac{0.003087 \, N}{(5.2 \times 10^4 \, m/s) \cdot 0.0045 \, T \cdot \sin(0.610865238)} \][/tex]
From the earlier calculation, we know that:
[tex]\[ \sin(0.610865238) \approx 0.573576436 \][/tex]
Now perform the calculation:
[tex]\[ q = \frac{0.003087}{5.2 \times 10^4 \times 0.0045 \times 0.573576436} \][/tex]
[tex]\[ q \approx 2.300008657 \times 10^{-5} \, C \][/tex]
The magnitude of the charge is approximately [tex]\( 2.300008657 \times 10^{-5} \, C \)[/tex], which can be converted to microcoulombs ([tex]\( \mu C \)[/tex]):
[tex]\[ q \approx 2.3 \times 10^{-5} \, C \][/tex]
[tex]\[ q = 23 \, \mu C \][/tex]
Thus, the magnitude of the charge is [tex]\( 23 \, \mu C \)[/tex], corresponding to the second option provided:
[tex]\[ \boxed{23 \, \mu C} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.