Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To sketch the graph of [tex]\( g(x) = -\frac{1}{2}(3^x) + 3 \)[/tex] using transformations, let's break down the transformations applied to the base function [tex]\( f(x) = 3^x \)[/tex].
### Step-by-Step Transformations
1. Start with the base function [tex]\( f(x) = 3^x \)[/tex].
2. Vertical Scaling and Reflection:
- The function is scaled vertically by [tex]\( -\frac{1}{2} \)[/tex]. This means every value of the function [tex]\( 3^x \)[/tex] is multiplied by [tex]\( -\frac{1}{2} \)[/tex].
- This will both compress the graph vertically and reflect it across the x-axis. The new function can be written as [tex]\( g_1(x) = -\frac{1}{2}(3^x) \)[/tex].
3. Vertical Translation:
- Finally, add 3 to the result of the previous step, which shifts the entire graph upwards by 3 units. This gives us the final function [tex]\( g(x) = -\frac{1}{2}(3^x) + 3 \)[/tex].
### Calculating Key Points
Let's find the values of [tex]\( g(x) \)[/tex] for some key points:
- When [tex]\( x = -2 \)[/tex]:
[tex]\[ g(-2) = -\frac{1}{2}(3^{-2}) + 3 = -\frac{1}{2} \cdot \frac{1}{9} + 3 = -\frac{1}{18} + 3 \approx 2.944 \][/tex]
- When [tex]\( x = -1 \)[/tex]:
[tex]\[ g(-1) = -\frac{1}{2}(3^{-1}) + 3 = -\frac{1}{2} \cdot \frac{1}{3} + 3 = -\frac{1}{6} + 3 \approx 2.833 \][/tex]
- When [tex]\( x = 0 \)[/tex]:
[tex]\[ g(0) = -\frac{1}{2}(3^0) + 3 = -\frac{1}{2} \cdot 1 + 3 = -\frac{1}{2} + 3 = 2.5 \][/tex]
- When [tex]\( x = 1 \)[/tex]:
[tex]\[ g(1) = -\frac{1}{2}(3^1) + 3 = -\frac{1}{2} \cdot 3 + 3 = -1.5 + 3 = 1.5 \][/tex]
- When [tex]\( x = 2 \)[/tex]:
[tex]\[ g(2) = -\frac{1}{2}(3^2) + 3 = -\frac{1}{2} \cdot 9 + 3 = -4.5 + 3 = -1.5 \][/tex]
### Analyzing the Transformation Effect
- Asymptote: The horizontal asymptote of the original function [tex]\( 3^x \)[/tex] is [tex]\( y = 0 \)[/tex]. After the vertical transformation and translation, the new horizontal asymptote for [tex]\( g(x) \)[/tex] becomes [tex]\( y = 3 \)[/tex].
- Behavior: As [tex]\( x \to \infty \)[/tex], [tex]\( 3^x \)[/tex] grows very large. Scaling it by [tex]\(-\frac{1}{2}\)[/tex] will make it very negative, and shifting it by 3 will result in the function approaching [tex]\( y = 3 - \infty \)[/tex], remaining negative. Thus, [tex]\( g(x) \)[/tex] will tend towards negative infinity as [tex]\( x \)[/tex] increases.
### Summary: Plotting the Points
Using the key points and transformation understanding:
- [tex]\( (-2, 2.944) \)[/tex]
- [tex]\( (-1, 2.833) \)[/tex]
- [tex]\( (0, 2.5) \)[/tex]
- [tex]\( (1, 1.5) \)[/tex]
- [tex]\( (2, -1.5) \)[/tex]
Next, draw the transformed curve by connecting these points and ensuring the curve reflects the vertical scaling, reflection, and upward shift.
### Sketch the Graph
The graph will:
- Pass through the calculated points.
- Be downward-sloping due to the reflection.
- Approach the horizontal asymptote [tex]\( y = 3 \)[/tex] as [tex]\( x \rightarrow -\infty \)[/tex].
- Plummet towards negative infinity as [tex]\( x \rightarrow \infty \)[/tex].
### Conclusion
The transformations serve as a systematic way of sketching [tex]\( g(x) = -\frac{1}{2}(3^x) + 3 \)[/tex], ensuring accuracy and understanding of exponential function behavior.
### Step-by-Step Transformations
1. Start with the base function [tex]\( f(x) = 3^x \)[/tex].
2. Vertical Scaling and Reflection:
- The function is scaled vertically by [tex]\( -\frac{1}{2} \)[/tex]. This means every value of the function [tex]\( 3^x \)[/tex] is multiplied by [tex]\( -\frac{1}{2} \)[/tex].
- This will both compress the graph vertically and reflect it across the x-axis. The new function can be written as [tex]\( g_1(x) = -\frac{1}{2}(3^x) \)[/tex].
3. Vertical Translation:
- Finally, add 3 to the result of the previous step, which shifts the entire graph upwards by 3 units. This gives us the final function [tex]\( g(x) = -\frac{1}{2}(3^x) + 3 \)[/tex].
### Calculating Key Points
Let's find the values of [tex]\( g(x) \)[/tex] for some key points:
- When [tex]\( x = -2 \)[/tex]:
[tex]\[ g(-2) = -\frac{1}{2}(3^{-2}) + 3 = -\frac{1}{2} \cdot \frac{1}{9} + 3 = -\frac{1}{18} + 3 \approx 2.944 \][/tex]
- When [tex]\( x = -1 \)[/tex]:
[tex]\[ g(-1) = -\frac{1}{2}(3^{-1}) + 3 = -\frac{1}{2} \cdot \frac{1}{3} + 3 = -\frac{1}{6} + 3 \approx 2.833 \][/tex]
- When [tex]\( x = 0 \)[/tex]:
[tex]\[ g(0) = -\frac{1}{2}(3^0) + 3 = -\frac{1}{2} \cdot 1 + 3 = -\frac{1}{2} + 3 = 2.5 \][/tex]
- When [tex]\( x = 1 \)[/tex]:
[tex]\[ g(1) = -\frac{1}{2}(3^1) + 3 = -\frac{1}{2} \cdot 3 + 3 = -1.5 + 3 = 1.5 \][/tex]
- When [tex]\( x = 2 \)[/tex]:
[tex]\[ g(2) = -\frac{1}{2}(3^2) + 3 = -\frac{1}{2} \cdot 9 + 3 = -4.5 + 3 = -1.5 \][/tex]
### Analyzing the Transformation Effect
- Asymptote: The horizontal asymptote of the original function [tex]\( 3^x \)[/tex] is [tex]\( y = 0 \)[/tex]. After the vertical transformation and translation, the new horizontal asymptote for [tex]\( g(x) \)[/tex] becomes [tex]\( y = 3 \)[/tex].
- Behavior: As [tex]\( x \to \infty \)[/tex], [tex]\( 3^x \)[/tex] grows very large. Scaling it by [tex]\(-\frac{1}{2}\)[/tex] will make it very negative, and shifting it by 3 will result in the function approaching [tex]\( y = 3 - \infty \)[/tex], remaining negative. Thus, [tex]\( g(x) \)[/tex] will tend towards negative infinity as [tex]\( x \)[/tex] increases.
### Summary: Plotting the Points
Using the key points and transformation understanding:
- [tex]\( (-2, 2.944) \)[/tex]
- [tex]\( (-1, 2.833) \)[/tex]
- [tex]\( (0, 2.5) \)[/tex]
- [tex]\( (1, 1.5) \)[/tex]
- [tex]\( (2, -1.5) \)[/tex]
Next, draw the transformed curve by connecting these points and ensuring the curve reflects the vertical scaling, reflection, and upward shift.
### Sketch the Graph
The graph will:
- Pass through the calculated points.
- Be downward-sloping due to the reflection.
- Approach the horizontal asymptote [tex]\( y = 3 \)[/tex] as [tex]\( x \rightarrow -\infty \)[/tex].
- Plummet towards negative infinity as [tex]\( x \rightarrow \infty \)[/tex].
### Conclusion
The transformations serve as a systematic way of sketching [tex]\( g(x) = -\frac{1}{2}(3^x) + 3 \)[/tex], ensuring accuracy and understanding of exponential function behavior.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.