At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which equation best models the fine schedule for overdue books, we will analyze the given data and check which equation fits this data.
Given data:
[tex]\[ \begin{array}{|c|c|} \hline \text{Days overdue} & \text{Amount of fine (Cents)} \\ \hline 0 & 0 \\ \hline 2 & 5 \\ \hline 4 & 10 \\ \hline 6 & 15 \\ \hline 8 & 20 \\ \hline 10 & 25 \\ \hline \end{array} \][/tex]
1. Understanding the Relationship:
- We observe that as the number of days overdue increases, the amount of fine increases. Checking the increments, we can see a pattern: for every 2 additional days overdue, the fine increases by 5 cents.
This suggests a linear relationship between the days overdue and the fine.
2. Identifying the Linear Relationship:
- A linear relationship can generally be expressed as [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
3. Calculating the Slope (m):
- From the data:
- When days overdue [tex]\( x = 0 \)[/tex], fine [tex]\( y = 0 \)[/tex].
- When days overdue [tex]\( x = 10 \)[/tex], fine [tex]\( y = 25 \)[/tex].
- Using the formula for the slope, [tex]\( m = \frac{y_2 - y_1}{x_2 - x_1} \)[/tex]:
[tex]\[ m = \frac{25 - 0}{10 - 0} = \frac{25}{10} = 2.5 \][/tex]
4. Fitting the Equation:
- The linear equation, thus, can be represented as [tex]\( y = 2.5x \)[/tex].
5. Verifying the Model with All Data Points:
- Checking the other points using [tex]\( y = 2.5x \)[/tex]:
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = 2.5 \times 2 = 5 \][/tex]
- For [tex]\( x = 4 \)[/tex]:
[tex]\[ y = 2.5 \times 4 = 10 \][/tex]
- For [tex]\( x = 6 \)[/tex]:
[tex]\[ y = 2.5 \times 6 = 15 \][/tex]
- For [tex]\( x = 8 \)[/tex]:
[tex]\[ y = 2.5 \times 8 = 20 \][/tex]
- For [tex]\( x = 10 \)[/tex]:
[tex]\[ y = 2.5 \times 10 = 25 \][/tex]
- All given data points fit perfectly with [tex]\( y = 2.5x \)[/tex].
6. Deciding the Correct Equation:
- From the options provided:
- [tex]\( y = \frac{5}{2}x \)[/tex] is equivalent to [tex]\( y = 2.5x \)[/tex].
- We express [tex]\( y \)[/tex] (the fine) as a function of [tex]\( x \)[/tex] (the days overdue), hence:
[tex]\[ y = \frac{5}{2} x, \quad \text{where } y \text{ is the cost in cents for a book that is } x \text{ days overdue}. \][/tex]
Therefore, the correct equation that best models the fine schedule for overdue books is:
[tex]\[ \boxed{y = \frac{5}{2} x, \text{ where } y \text{ is the cost in cents for a book that is } x \text{ days overdue.}} \][/tex]
Given data:
[tex]\[ \begin{array}{|c|c|} \hline \text{Days overdue} & \text{Amount of fine (Cents)} \\ \hline 0 & 0 \\ \hline 2 & 5 \\ \hline 4 & 10 \\ \hline 6 & 15 \\ \hline 8 & 20 \\ \hline 10 & 25 \\ \hline \end{array} \][/tex]
1. Understanding the Relationship:
- We observe that as the number of days overdue increases, the amount of fine increases. Checking the increments, we can see a pattern: for every 2 additional days overdue, the fine increases by 5 cents.
This suggests a linear relationship between the days overdue and the fine.
2. Identifying the Linear Relationship:
- A linear relationship can generally be expressed as [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
3. Calculating the Slope (m):
- From the data:
- When days overdue [tex]\( x = 0 \)[/tex], fine [tex]\( y = 0 \)[/tex].
- When days overdue [tex]\( x = 10 \)[/tex], fine [tex]\( y = 25 \)[/tex].
- Using the formula for the slope, [tex]\( m = \frac{y_2 - y_1}{x_2 - x_1} \)[/tex]:
[tex]\[ m = \frac{25 - 0}{10 - 0} = \frac{25}{10} = 2.5 \][/tex]
4. Fitting the Equation:
- The linear equation, thus, can be represented as [tex]\( y = 2.5x \)[/tex].
5. Verifying the Model with All Data Points:
- Checking the other points using [tex]\( y = 2.5x \)[/tex]:
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = 2.5 \times 2 = 5 \][/tex]
- For [tex]\( x = 4 \)[/tex]:
[tex]\[ y = 2.5 \times 4 = 10 \][/tex]
- For [tex]\( x = 6 \)[/tex]:
[tex]\[ y = 2.5 \times 6 = 15 \][/tex]
- For [tex]\( x = 8 \)[/tex]:
[tex]\[ y = 2.5 \times 8 = 20 \][/tex]
- For [tex]\( x = 10 \)[/tex]:
[tex]\[ y = 2.5 \times 10 = 25 \][/tex]
- All given data points fit perfectly with [tex]\( y = 2.5x \)[/tex].
6. Deciding the Correct Equation:
- From the options provided:
- [tex]\( y = \frac{5}{2}x \)[/tex] is equivalent to [tex]\( y = 2.5x \)[/tex].
- We express [tex]\( y \)[/tex] (the fine) as a function of [tex]\( x \)[/tex] (the days overdue), hence:
[tex]\[ y = \frac{5}{2} x, \quad \text{where } y \text{ is the cost in cents for a book that is } x \text{ days overdue}. \][/tex]
Therefore, the correct equation that best models the fine schedule for overdue books is:
[tex]\[ \boxed{y = \frac{5}{2} x, \text{ where } y \text{ is the cost in cents for a book that is } x \text{ days overdue.}} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.