Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the given system of equations by substitution, the process involves isolating one variable in one of the equations and substituting it into the other equation. Here's a detailed, step-by-step solution to determine the best variable and equation for substitution:
Given the system of equations:
1. [tex]\( x + 6y = 9 \)[/tex]
2. [tex]\( x - 10y = 13 \)[/tex]
### Step-by-Step Solution:
1. Consider isolating one variable:
- First equation: [tex]\( x + 6y = 9 \)[/tex]
- Second equation: [tex]\( x - 10y = 13 \)[/tex]
2. Solve for [tex]\( x \)[/tex] in the first equation:
- [tex]\( x + 6y = 9 \)[/tex]
- To isolate [tex]\( x \)[/tex], subtract [tex]\( 6y \)[/tex] from both sides:
[tex]\[ x = 9 - 6y \][/tex]
3. Substitute [tex]\( x \)[/tex] from the first equation into the second equation:
- Second equation: [tex]\( x - 10y = 13 \)[/tex]
- Substitute [tex]\( x = 9 - 6y \)[/tex]:
[tex]\[ (9 - 6y) - 10y = 13 \][/tex]
4. Simplify and solve for [tex]\( y \)[/tex]:
- Combine like terms:
[tex]\[ 9 - 16y = 13 \][/tex]
- Subtract 9 from both sides:
[tex]\[ -16y = 4 \][/tex]
- Divide both sides by -16:
[tex]\[ y = -\frac{1}{4} \][/tex]
### Conclusion:
From the detailed steps, the best way to solve this system is to isolate [tex]\( x \)[/tex] in the first equation [tex]\( x + 6y = 9 \)[/tex] and then substitute it into the second equation [tex]\( x - 10y = 13 \)[/tex].
Thus, the best variable to solve for is [tex]\( \mathbf{x} \)[/tex], and the best equation to solve from is the [tex]\(\mathbf{first \ equation}\)[/tex].
Answer: [tex]\( \boxed{\text{B. } x, \text{ in the first equation}} \)[/tex]
Given the system of equations:
1. [tex]\( x + 6y = 9 \)[/tex]
2. [tex]\( x - 10y = 13 \)[/tex]
### Step-by-Step Solution:
1. Consider isolating one variable:
- First equation: [tex]\( x + 6y = 9 \)[/tex]
- Second equation: [tex]\( x - 10y = 13 \)[/tex]
2. Solve for [tex]\( x \)[/tex] in the first equation:
- [tex]\( x + 6y = 9 \)[/tex]
- To isolate [tex]\( x \)[/tex], subtract [tex]\( 6y \)[/tex] from both sides:
[tex]\[ x = 9 - 6y \][/tex]
3. Substitute [tex]\( x \)[/tex] from the first equation into the second equation:
- Second equation: [tex]\( x - 10y = 13 \)[/tex]
- Substitute [tex]\( x = 9 - 6y \)[/tex]:
[tex]\[ (9 - 6y) - 10y = 13 \][/tex]
4. Simplify and solve for [tex]\( y \)[/tex]:
- Combine like terms:
[tex]\[ 9 - 16y = 13 \][/tex]
- Subtract 9 from both sides:
[tex]\[ -16y = 4 \][/tex]
- Divide both sides by -16:
[tex]\[ y = -\frac{1}{4} \][/tex]
### Conclusion:
From the detailed steps, the best way to solve this system is to isolate [tex]\( x \)[/tex] in the first equation [tex]\( x + 6y = 9 \)[/tex] and then substitute it into the second equation [tex]\( x - 10y = 13 \)[/tex].
Thus, the best variable to solve for is [tex]\( \mathbf{x} \)[/tex], and the best equation to solve from is the [tex]\(\mathbf{first \ equation}\)[/tex].
Answer: [tex]\( \boxed{\text{B. } x, \text{ in the first equation}} \)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.