Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Given: [tex]-7x \ \textless \ -21[/tex].

Choose the solution set.
A. [tex]\{x \mid x \ \textless \ 3\}[/tex]
B. [tex]\{x \mid x \ \textgreater \ 3\}[/tex]
C. [tex]\{x \mid x \ \textless \ -3\}[/tex]
D. [tex]\{x \mid x \ \textgreater \ -3\}[/tex]

Sagot :

To solve the inequality [tex]\(-7x < -21\)[/tex], follow these steps:

1. Identify the given inequality:
We start with [tex]\(-7x < -21\)[/tex].

2. Isolate the variable [tex]\( x \)[/tex]:
To isolate [tex]\( x \)[/tex], we need to divide both sides of the inequality by [tex]\(-7\)[/tex]. However, remember that when dividing or multiplying both sides of an inequality by a negative number, the direction of the inequality sign will reverse.

[tex]\[ -7x < -21 \][/tex]

Dividing both sides by [tex]\(-7\)[/tex]:

[tex]\[ x > \frac{-21}{-7} \][/tex]

[tex]\[ x > 3 \][/tex]

3. Interpret the result:
The solution to the inequality is [tex]\( x > 3 \)[/tex].

4. Choose the correct solution set from the given options:
- [tex]\((x \mid x < 3)\)[/tex]
- [tex]\((x \mid x > 3)\)[/tex]
- [tex]\((x \mid x < -3)\)[/tex]
- [tex]\(\{x \mid x > -3\}\)[/tex]

The correct solution set is [tex]\((x \mid x > 3)\)[/tex].

Thus, the solution set for the inequality [tex]\(-7x < -21\)[/tex] is [tex]\((x \mid x > 3)\)[/tex]. This means that [tex]\( x \)[/tex] must be any number greater than 3.